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Many previous diagnoses of the global kinetic energy for a tropical cyclone have given 

prominence to a global integral of a pressure-work term in the generation of kinetic energy. 
However, in his erudite textbook of atmospheric and oceanic dynamics, Gill (1982) derives a 
form of the kinetic energy equation in which there is no such explicit source term. In this paper 
we revisit the interpretations of the generation of kinetic energy given previously in the light of 
Gill’s analysis and compare the various interpretations, which are non-unique. 

Further, even though global energetics provide a constraint on the flow evolution, in the 
context of the kinetic energy equation, they conceal important aspects of energy generation 
and consumption, a finding that highlights the limitations of a global kinetic energy budget in 
revealing the underlying dynamics of tropical cyclones. 
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1  Introduction 
 
In a classical review paper, Anthes (1974, section DI) summarized the global energetics 
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of tropical cyclones, based in part on the work of Palmén and Jordan (1955) and Palmén and 
Riehl (1957). In this review he argues that the kinetic energy is dominated by the horizontal 
velocity components and he derives an expression for the rate-of-generation of kinetic energy, 
showing that “The important source of kinetic energy production in the hurricane is the radial 
flow toward lower pressure in the inflow layer, represented by ." (Here  is the radial 
velocity component,  is the radius and  is the pressure). In a similar vein, Palmén and Riehl 
op. cit. note that "the generation depends on the vertical correlation between radial flow 
component and pressure gradient which, for production of kinetic energy, must be positive, i.e., 
the strongest inflow must occur at the strongest inward directed pressure gradient. They 
conclude that “kinetic energy production within the cyclone can take place only if the cyclone is 
of the warm core type." Anthes goes on to argue that “This inflow is a result of surface friction, 
which reduces the tangential wind speed and thereby destroys the gradient balance, so that the 
inward pressure gradient force exceeds the Coriolis and centripetal forces. In the warm core 
low the maximum pressure gradient ( )1 occurs just above the surface layer, at which 
the inflow ( ) is maximum in magnitude. In the outflow layer, where the radial flow is 
reversed, the pressure gradient is much weaker. The result is a net production of kinetic energy, 
dominated by the contribution from the inflow region." 

The foregoing interpretations seem at odds with the kinetic energy equation in flux form 
presented by Gill (1982) in which the term  does not appear. Nevertheless, in the 
context of tropical cyclones, subsequent work has built on the formulation by Palmén and Riehl 
as reviewed by Anthes (e.g. Kurihara 1975, Tuleya and Kurihara 1975, Frank 1977, DiMego and 
Bosart 1982, Hogsett and Zhang 2009, Wang   et al. 2016). The generation of kinetic energy in 
the context of the global climate is discussed by Peixoto and Oort (1992, section 13.2). 

The purpose of this paper is to reconcile the different interpretations of kinetic energy 
generation and to calculate the various terms in the kinetic energy budget from an idealized 
high-resolution numerical simulation of a tropical cyclone. 

 

2  Kinetic energy equations 
 
In its most basic form, the momentum equation may be written as  

 (1) 

 where  is the three dimensional velocity vector,  is the pressure,  is the density,  is the 
frictional force opposing the motion, ,  is the Coriolis parameter ( , where  is 
latitude and  is the earth’s rotation rate), g is the acceleration due to gravity, and  is the unit 
vector in the vertical direction (here and below, all vector quantities are in bold type). For 
simplicity, an f-plane is assumed (f = constant) and the Coriolis terms proportional to the cosine 
                                                       
1 Presumably Anthes meant . 
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of the latitude have been neglected as is customary for geophysical flow analyses off of the 
equator (e.g., McWilliams 2011). 

The kinetic energy equation is obtained by taking the scalar product Equation (1) with  
using the identity , where  is the vorticity vector. This 
procedure gives:  

 (2) 

 where  is the vertical component of velocity. Note that the Coriolis force ( ) 
does not appear in the energy equation because it is orthogonal to . 

An alternative form of the energy equation is obtained by removing some 
hydrostatically-balanced reference pressure, , from (1), where  
defines a reference density, , that is a function of altitude . Then, with the substitution 

 and , the first two terms on the right-hand-side of Equation 
(1), , become , where  is the buoyancy 
force of an air parcel per unit mass. Then, Equation (2) becomes  

 (3) 

 where  is the horizontal velocity vector,  is the horizontal gradient operator and  
 (4) 

 is the net vertical perturbation gradient force per unit mass. Despite the explicit appearance of 
 in the first term on the right-hand-side, all the terms in Equation (3) are independent of the 

reference pressure , since, in particular, . For simplicity, we take 
 and  to be the ambient pressure and density, respectively, assuming that these 

are in hydrostatic equilibrium. Then  vanishes at large distances from the vortex axis. 
We examine now the different forms of Equation (3) derived by Anthes (1974), Gill 

(1982), and others beginning with a slight modification of Gill’s formulation. 
 
2.1  Modified Gill’s formulation 
 
In essence, Gill’s formulation of the kinetic energy equation is as follows. Using the 

result that for any scalar field, ,  
 (5) 

 where  is the material derivative (see Gill 1982, Equation 4.3.6)2, the 
material form of Equation (3) times  may be written in flux form as  

                                                       
2 If the density refers to that of a moist air parcel consisting of dry air, water vapour and liquid water, the density is conserved only if the liquid 
water component is suspended in the parcel. In the presence of precipitation, there will be a small source or sink of density associated with the 
flux divergence of falling precipitation. In what follows, we will ignore the effects of this source/sink term in the kinetic energy budget. 

This article is protected by copyright. All rights reserved.



 
 (6) 

 where  
 (7) 

 is the mechanical energy flux density vector (Gill, 1982, cf. Equation 4.6.4). 
The global kinetic energy budget can be obtained by integrating Equation (6) over a 

cylindrical volume of space, , of radius  and height  centred on the storm and using the 
boundary conditions that  at , and  at  and . Here, we use a 
cylindrical coordinate system  centred on the vortex, where  is the radius,  is the 
azimuth and  is the height. We denote an integral of the quantity  over the volume  by  

 
Then (6) becomes   MODIFIED GILL’S FORM  

 (8) 
   where  

 (9) 

 is the flux of mechanical energy through the side boundary , and for a Newtonian fluid 
with dynamic viscosity coefficient ,  

 (10) 
 where, in cylindrical coordinates,  

 

 

 (11) 
 is the dissipation function3. Here,  is the tangential wind component. 

Since  is the fractional change in the horizontal area of an air parcel per unit 
time, the first term on the right-hand-side of Equation (8) is the cumulative effect of the kinetic 
                                                       
3 Equation (8) is, in essence, the kinetic energy equation for the Reynolds averaged flow in which the quantity  is a turbulent eddy counterpart. 
In this case, we are presuming that a K-theory closure is adequate so that the Reynolds averaged equations look essentially like the Newtonian 
fluid formulation. Further, in the mechanical energy flux through the side boundary in Equation (9) we have neglected the eddy diffusive radial 
flux of kinetic energy. Relative to the advective flux of kinetic energy, the diffusive flux scales as the inverse Reynolds number of the flow, which 
is always small compared to unity outside of the surface layer. This conclusion is based on recently obtained estimates of the turbulent eddy 

diffusivity observed in major hurricanes on the order of  m s  (Zhang et al. 2011). 
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energy generated locally when an air parcel with positive perturbation pressure expands in the 
horizontal or one with a negative perturbation pressure contracts in the horizontal. The second 
term on the right-hand-side of this equation represents the rate of kinetic energy production by 
air rising in the presence of a positive net vertical perturbation pressure gradient force ( ) 
and air sinking in the presence of a negative net vertical perturbation pressure gradient force 
( ). In Gill’s original formulation, the net vertical perturbation pressure gradient force term 
in Equation (8) is replaced by a buoyancy force, which, by itself, is a non-unique force, and the 
second term on the right-hand-side is replaced by , which is the fractional change in 
volume of an air parcel. Note that, in Gill’s formulation, there is no term corresponding with 

 (or equivalently ) in Anthes’ formulation of the problem, which a number of 
authors have argued is the key term in generating kinetic energy. 

 
2.2  Generalized Anthes’ formulation 
 
As noted above, Anthes reasonably supposes that the vertical velocity makes only a 

small contribution to the global kinetic energy and his derivation of the kinetic energy equation 
is based on the horizontal momentum equations only and the neglect of the contribution from 

 in the kinetic energy. Nevertheless, Anthes retains the vertical velocity component in the 

advection term  in Equation (1) and  in Equation (2). A slightly generalized 
form of Anthes’ equation follows directly from  times Equation (3), which in flux form 
analogous to (6) is  

 
 (12) 

 where  
 (13) 

 Again integrating over the cylinder, Equation (12) becomes   GENERALIZED ANTHES’ FORM  

 (14) 
   where  

 (15) 

 Equation (14) is a generalization of Anthes’ formulation to include the three-dimensional wind 
vector in the definition of kinetic energy and the rate of working of the net vertical perturbation 
gradient force per unit volume, , which is a non-hydrostatic effect. As in Anthes’ original 
form, the pressure-work term, , appears explicitly in the global form of the kinetic 
energy equation. For an axisymmetric flow, this term is simply  and, at first 
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sight, one might question its prominence as a source of kinetic energy, since  is not 
the only radial force acting on fluid parcels en route to the storm core. Above the frictional 
boundary layer, the radial pressure gradient is closely balanced by the sum of the centrifugal 
force and the radial component of the Coriolis force. Moreover, this source term does not 
appear in Gill’s formulation (cf. Eq. (8)), although it is replaced by the term  and the 
boundary flux terms are different. Even so, one should bear in mind that even in the 
axisymmetric case,  is generating not only a radial contribution to the kinetic 
energy, but also an azimuthal contribution through the action of the generalized Coriolis force 

. The generation of this azimuthal contribution is implicit in the kinetic energy 
equation as the generalized Coriolis force does no work, but it does convert radial momentum 
to tangential momentum. 

 

3  Kinetic energy budget for an idealized simulation 
 
We examine now the generation terms in the two forms of the kinetic energy equation 

for the case of an idealized tropical cyclone simulation. We begin with a brief description of the 
numerical model and go on to present the results. 

 
3.1  The numerical model 
 
The numerical model used for this study is Bryan’s three-dimensional, nondydrostatic 

cloud model (CM1), version 16 (Bryan and Fritsch, 2002). The simulations relate to the 
prototype problem for tropical cyclone intensification, which considers the evolution of an 
initially axisymmetric, cloud-free, warm-cored, baroclinic vortex in a quiescent environment on 
an -plane. The initial vortex is in thermal wind balance. A latitude of 20 N and a constant sea 
surface temperature of 28 C are assumed. The model configuration is more or less the same as 
described in section 2 of rnivec   et al. (2016). The differences are that, following the work of 
Mapes and Zuidema (1996), a more realistic time scale for Newtonian relaxation to the 
temperature field (10 days) is applied here instead of the previous default value in CM1 (12 h). 
Further, an open boundary condition is taken at lateral boundaries instead of rigid walls and the 
Dunion moist tropical sounding is used as the environmental sounding (Dunion 2011). 

The initial tangential wind speed has a maximum of 15 m s  at the surface at a radius 
of 100 km. The tangential wind speed decreases sinusoidally with height, becoming zero at a 
height of 20 km. Above this height, up to 25 km, the tangential wind is set to zero. The balanced 
pressure, density and temperature fields consistent with this prescribed tangential wind 
distribution are obtained using the method described by Smith (2006). The calculations are 
carried out for a period of 4 days with data output every 15 min. 
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  (a)  
(b)  
 (c)   

Figure  1: Time series of (a) maximum azimuthally-averaged tangential wind speed ( ). Panel 
(b) shows the radius  at which the maximum tangential wind speed occurs ( ). Panel 

(c) shows the radius at which gale force winds occurs ( ), where  calculated at a 
height of 1 km, and corresponds to the radius of 17 m s  total winds outside the eyewall. 

 
 
3.2  A few details of the simulation 
 
Figure 1 summarizes the vortex evolution in the simulation. Panel (a) shows time series 

of the maximum azimuthally-averaged tangential wind speed, , and panel (b) shows the 
radius  at which  occurs. Typically,  is located a few hundred meters above the 
surface, within a shallow inflow layer. The evolution is broadly similar to that described in Kilroy   
et al. (2016), who used a different numerical model and a much coarser horizontal resolution 
(horizontal grid spacing 5 km compared with 1 km used here). In brief, after a gestation for 
about a day during which deep convection becomes established inside , the vortex 
undergoes a rapid intensification phase lasting about 36 h, before reaching a quasi-steady state. 
Initially  is located at a radius of 100 km, but contracts to a little more than 20 km after 
about 2  days. The most rapid contraction occurs during the rapid intensification phase as 
absolute angular momentum surfaces are drawn inwards quickly within and above the 
boundary layer. 

Figure 1(c) shows the outermost radius of gale-force winds, , defined here as the 
radius of 17 m s  azimuthally-averaged tangential winds at a height of 1 km, which is 
approximately at the top of the frictional boundary layer. Shown also is , defined as the 
(outer) radius at which the total wind speed at any grid point at a height of 10 m is 17 m s . 
Both quantities serve as a measure of the vortex size,  being closest to the quantity used 
by forecasters4, but  being a preferred measure from a theoretical viewpoint (Kilroy   et 
al. 2016). The evolution of storm size based on  is similar to that based on , 
although  always exceeds the value of . After 4 days,  exceeds  by 
about 80 km. 

Figure 3.2 shows vertical cross sections of the azimuthally-averaged, 3 h time averaged, 
radial and tangential velocity components, the vertical velocity component, and the -surfaces 

                                                       
4 Based on the wind speed in a particular sector and not azimuthally averaged. 
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during the intensification phase of the vortex. The time averages are centred on 36 h during the 
period of rapid intensification and at 60 h near the end of this period. The basic features of the 
flow are qualitatively similar at both times, but all three velocity components strengthen over 
the period, the -surfaces moving inwards in the lower troposphere and outwards in the upper 
troposphere. The flow structure is similar to that which has been described in many previous 
studies (see e.g. the recent review by Montgomery and Smith 2017a and refs.) with a layer of 
strong shallow inflow marking the frictional boundary layer, a layer of weaker inflow in the 
lower troposphere, a region of strong outflow in the upper troposphere and a layer of 
enhanced inflow below the outflow. The maximum tangential wind speed occurs within, but 
near the top of the frictional boundary layer5. Much of the ascent occurs in an annular region 
on the order of 50-60 km in radius. The region inside this annulus shows mostly descent. 

   (a) (b) 
 (c) (d) 
   

Left panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged 
tangential velocity component (blue contours) centred at 36 h and 60 h. Superimposed are 

contours and shading of the averaged vertical velocity. Contour intervals are as follows. 
Tangential velocity: blue contours every 5 m s , with a thick black contour highlighting the 17 

m s  contour. Vertical velocity: thin red contours every 0.05 m s  to 0.2 m s , thick red 
contour interval 0.5 m s , thin dashed red contours indicate subsidence at intervals of 0.02 m 

s . Right Panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged 
radial velocity component together with the averaged vertical velocity centred at the same 
times. Contour intervals are as follows. Radial velocity: thick blue contours 4 m s , dashed 
negative, thin blue dashed contours every 0.5 m s  down to -3.5 m s . Absolute angular 
momentum: thick black contours every  m  s , with the  m  s  contour 

highlighted in yellow. 
   
 
3.3  Kinetic energy evolution 
 
Figure 2 shows time series of the domain-averaged kinetic energy per unit mass, 

, for domain radii 300 km and 500 km and a domain height of 20 km. As anticipated by 
Anthes (1974), this quantity is dominated by the horizontal velocity components: in fact, the 

curves for  and  essentially overlap. It follows that the contribution of the vertical 

                                                       
5 At 60 h, the tangential wind field exhibits a second local maximum in the eyewall. This is a transient feature that is presumably associated with 
a centrifugal wave near the base of the eyewall (e.g. Montgomery and Smith 2017, p550) excited by an elevated pulse of boundary layer 
outflow shortly before. This feature is not seen at 48 h or 72 h and its presence doesn’t alter the findings concerning the kinetic energy budget. 
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velocity to the global kinetic energy is negligible. Notable features of the curves for both 
domain sizes are the slight decrease during the first 12 h on account of surface friction, 
followed by a rapid increase as the vortex intensifies. As time proceeds, the rate of increase 
progressively declines. 

 
3.4  Kinetic energy generation: Anthes’ formulation 
 
Figure 3 shows time series of the principal terms in the generalized Anthes formulation 

(the right-hand-side of Equation (14)), excluding only the global dissipation term since the focus 
of the paper is on kinetic energy generation. For both domain radii, 300 km (Fig. 4(a)) and 500 
km (Fig. 4(a)), both the terms  and  are positive, but, perhaps surprisingly, 
the former term is not appreciably larger than the latter, even beyond 2 days when the 
differences are largest. The boundary flux term  is virtually zero throughout the 
calculation. For the larger domain size (R = 500 km), the temporal behaviour of the various 
terms is similar, but, as expected, the magnitudes of the respective terms are appreciably 
smaller (Fig. 4(b)), since the largest contributions to the averages are from well inside a 300 km 
radius (note the different scales on the ordinate in Figs. 4(a) and 4(b)). 

The finding that the two terms  and  are not appreciably different in 
magnitude is at first sight surprising since, as shown in Figure 2, the contribution of the vertical 
velocity to the total kinetic energy is negligible. Moreover, the  term does not appear in 
Anthes’ original formulation because the formulation was based on the horizontal momentum 
equations only. An explanation of this result is suggested by an examination of the radial-height 
structure of the azimuthally-averaged generation term before completing the columnar 
average, i.e. , where the angle brackets denote an azimuthal average. The 
structure of this average together with those of the other generation term, , at 36 h 
and 60 h, is shown in Figure 4. At both times, the Anthes generation term  
shows coherent regions of large kinetic energy generation and of large kinetic energy 
destruction. The main region of generation in panels (a) and (b) is at low levels, below about 2 
km, where the strongest inflow occurs and where the inward directed radial pressure gradient 
force is particularly strong (panels (c) and (d) of Figure 4). There is a second region of 
generation in an annular column, mostly on the outer side of the eyewall updraught below 
about 9 km at 36 h and below about 12 km at 60 h. The generation terms in panels (a) and (b) 
are similar in structure and magnitude to that shown by Kurihara (1975, Figure 42, upper right) 
for a lower resolution axisymmetric simuulation. 

 
   

Figure  2: Time series of the left-hand-side of Equation 14,  (curves labelled uvw) 
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compared to  (curves labelled uv) for cylinders of 300 km and 500 km. The curves for 
each cylinder size lie essentially on top of each other so that only a single curve is evident. The 

curves for the 500 km domain are labelled with a ‘5’. 
   
  (a)  (b)    

Figure  3: Time series of the kinetic energy tendency terms on the right-hand-side of Equation 
(14), the Anthes’ formulation, averaged over a cylinder of size (a) 300 km and (b) 500 km. Units 

on the ordinate are  W m . The dissipation term is not shown. A1 stands for 
, FK for  and PW for . A1+ and A1- stand for the contributions to A1 

from regions where the argument  is positive and negative, respectively. 
  
  (a)  (b)  
 (c)  (d)  
 (e)  (f)  
   

Figure  4: Radius-height cross sections of azimuthally-averaged quantities in Equation (14), 
before performing the columnar average:  (panels (a), (b)); and  

(panels (e), (f)), at 36 h (left panels) and 60 h (right panels). Panels (c) and (d) show similar cross 
sections of  at these times. Contour intervals are as follows. Panels (a), (b), (e) and 

(f): thick contours  W m : thin contours  W m . Solid red contours 
positive, dashed blue contours negative. Panels (c) and (d): thin contours  Pa m  to 

 Pa m ; medium thick contours  Pa m  to  Pa m ; thick 
contours every  Pa m . Numbers indicated on the side bar should be multiplied by 

. 
 
  (a)   (b)  
  (c)  (d)  
  

Figure  5: Time series of the kinetic energy tendency terms:  (denoted by G1);  
(denoted PW) and  (denoted FK) in the modified Gill formulation [Equation (8) averaged 

over a cylinder of size (a) 300 km and (b) 500 km. Units on the ordinate are  W m . 
Panels (c) and (d) show the azimuthally averaged terms  in Equation (8) at 36 h 
and 60 h, respectively. Contour intervals are: thick contours  W m : thin contours 

 W m . Solid red contours positive, dashed blue contours negative. Numbers 
indicated on the side bar should be multiplied by . 

  
Since the radial pressure gradient is positive at all heights [panels (c) and (d) of Figure 4], 
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these generation regions must be ones in which there is generally inflow6. For the same reason, 
where there is outflow, there is kinetic energy removal as seen in the two principal coherent 
regions in panels (a) and (b) where . It follows that the computed value of 

 is the remainder resulting from the cancellation of two comparatively large 
contributions from  of opposite sign, namely  and 

, the former being the sum of all positive values of  and the latter 
 to be the sum of all negative values. This large cancellation is evident in the 

time series shown in Figure 3. 
In summary, a substantial fraction of the kinetic energy that is generated is removed in 

regions where there is outflow and the residual is relatively small, comparable, indeed, with the 
kinetic energy generated by the rate-of-working of the net vertical perturbation pressure 
gradient force (buoyancy plus perturbation pressure gradient), principally in the region of 
diabatically-forced ascent. The structure of the net vertical perturbation pressure gradient force 
at 36 h and 60 h is shown in panels (e) and (f) of Figure 4. As expected, this force is 
concentrated in an annular region overlapping the region of diabatic heating. 

 
3.5  Kinetic energy generation (Gill’s formulation) 
 
Figure 5 shows time series of the principal terms in the modified Gill formulation (the 

right-hand-side of Equation (8)), excluding again the global dissipation term. In this formulation, 
the term  is positive with mean amplitude and fluctuations about this mean 
increasing with time during the 4 day calculation [Fig. 5(b)]. For the first day, the term is a little 
less than the  term, but thereafter becomes progressively larger. The increasing energy 
source represented by the sum of the two foregoing terms is opposed, in part, by the net 
outward flux of mechanical energy through the radial boundary, . 

Panels (c) and (d) of Figure 5 show the structure of the term , again 36 h 
and 60 h. The radial and vertical integral of this term form the cylindrical average  in 
the modified Gill’s formulation of the energy equation. The qualitative radius-height structure 
of  at the two times shown is less easy to infer from the solutions in Figure 3.2. 
Moreover, as shown in Figure 5, there is significant cancellation between the term  
and the boundary flux term in Gill’s formulation [Equation (8)]. For this reason, the Anthes’ 
formulation of the energy equation would seem to be preferable to Gill’s formulation, even 
though both formulations are correct and give the same tendency of kinetic energy over the 
control volume of integration (see next subsection). 

 
   

                                                       
6 Note that eddy effects are included in all generation terms. 
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Figure  6: Sum of the terms for Gill’s and Anthes’ formulation excluding the dissipation term for 
cylinders of radius  300 km and 500 km. Values on the ordinate have been multiplied by 

 for plotting purposes. The two curves for each value of  lie essentially on top of each 
other. 

   
 
3.6  Total kinetic energy generation 
 
A check on the foregoing calculations is provided by calculating the total tendency of 

kinetic energy generation, which is the sum of all the terms on the right-hand-side of Equations 
(8) or (14). This sum should be the same for each formulation. That this is the case is verified in 
Figure 6, which shows the sum for each domain size. As expected, the curves for the two 
formulations are coincident. 

 

4  Discussion 
 
Anthes’ statement noted in the Introduction that “the important source of kinetic 

energy production in the hurricane is the radial flow toward lower pressure in the inflow layer, 
represented by " may seem at first sight problematic because, above the boundary 
layer, the radial pressure gradient is very closely in balance with sum of centrifugal and Coriolis 
forces. Thus the energy source associated with  might appear, at least at first sight, 
to be a gross overestimate. However, the kinetic energy equation doesn’t recognize the balance 
constraint and, in this equation, the radial pressure gradient acts to generate not only kinetic 
energy of radial motion, but also that of tangential motion through the action of the 
generalized Coriolis force , a term that appears in the tangential momentum 
equation in cylindrical coordinates. This is despite the fact that the generalized Coriolis force 
does not appear explicitly in the kinetic energy equation. 

As noted also in the Introduction, Anthes recognized that much of the inflow into the 
storm is “ ... a result of surface friction, which reduces the tangential wind speed and thereby 
destroys the gradient balance, so that the inward pressure gradient force exceeds the Coriolis 
and centripetal7 forces" and he pointed out that “In the warm core low the maximum pressure 
gradient (  [sign corrected: our insertion]) occurs at the lowest level, at which the 
inflow ( ) is maximum. In the outflow layer, where the radial flow is reversed, the pressure 
gradient is much weaker. The result is a net production of kinetic energy, dominated by the 
contribution from the inflow region". While this view is broadly supported by the calculations 
presented herein, the calculations provide a sharper view of the net production of kinetic 

                                                       
7 Presumably, Anthes means the centrifugal force. 
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energy indicating a region of significant kinetic energy generation accompanying inflow 
throughout the lower troposphere above the boundary layer as well as significant regions 
where kinetic energy is consumed as air flows outwards, against the radial pressure gradient, 
above the boundary layer. Indeed, the generation above the boundary layer is a manifestation 
of spin up by the classical mechanism articulated by Ooyama (1969), while the generation 
within the boundary layer, highlighted by Anthes, is a manifestation of the nonlinear boundary 
layer spin up mechanism articulated by Smith and Vogl (2008), Smith   et al. (2009), Smith and 
Montgomery (2016) and Montgomery and Smith (2017b). 

Anthes argues that the boundary layer “ ... must be responsible for a net gain of kinetic 
energy" even though “a substantial dissipation of kinetic energy in the hurricane occurs in the 
boundary layer through turbulent diffusion and ultimate loss of energy to the sea surface". As a 
result, he is led to the paradox that “surface friction is responsible for a net increase in kinetic 
energy and without friction the hurricane could not exist." The resolution of this paradox would 
appear to be Anthes’ de-emphasis of the role of the classical mechanism for spin up in the 
kinetic energy budget. 

The results of our study, especially the noted cancellation of relatively large generation 
and consumption contributions to the term  points to limitations in the utility of a 
global kinetic energy budget in revealing the underlying dynamics of tropical cyclone 
intensification. An alternative approach would be to examine the energetics of individual air 
parcels as they move around some hypothetical circuit (see Emanuel (2004) and references), 
but this approach relies on assumptions about the circuits traversed, circuits that may or may 
not be realizable in reality. 

 

5  Conclusions 
 
We have re-examined the traditional theory for kinetic energy generation in a tropical 

cyclone used by Palmén and Jordan (1955), Palmén and Riehl (1957), Frank (1977), Hogsett and 
Zhang (2009) and succinctly summarized in the review article by Anthes (1974). We have 
compared this with an alternative interpretation of global kinetic energy generation in 
geophysical flows inspired by Gill (1982), noting that such interpretations are non-unique. 

We have shown that the net rate of production of kinetic energy is a comparatively 
small difference between the generation in regions of inflow and the magnitude of the 
consumption in regions of outflow, so much so, that this difference is comparable in magnitude 
with the rate of generation by the net vertical perturbation pressure gradient force. The latter 
effect was not contained in Anthes’ original formulation, which was based only on the 
horizontal momentum equations. 

We pointed out that the kinetic energy generation term in Anthes’ formulation involving 
the radial pressure gradient does not appear in Gill’s formulation of the kinetic energy equation 
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or our modification thereof. It is replaced by a term comprising the global integral of the rate of 
working by perturbation pressure ( ) as the flow expands in the horizontal. However, 
this generation term is largely compensated in the modified Gill formulation by the boundary 
flux of mechanical energy ( ). The fact that the boundary flux of kinetic energy in the Anthes 
formulation ( ) is typically negligible, as well as the difficulty in anticipating the structure of 
the term  in a tropical cyclone are factors weighing in favour of using Anthes’ 
formulation when applied to the generation of kinetic energy in a tropical cyclone. However, in 
the light of the large cancellation of positive and negative values in the radial pressure-work 
term, the contribution from the rate of working of the net vertical force is non-negligible in 
comparison and should be included in any global kinetic energy budget. 

While global energetics provide a constraint on flow evolution, we have shown in the 
context of the kinetic energy equation that they conceal important aspects of energy 
generation and consumption. This finding highlights the limitations of a global kinetic energy 
budget in revealing the underlying dynamics of tropical cyclones. 
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7  Appendix: Calculation of the net vertical force, P 
 
The net vertical force per unit mass, , defined in Equation (4) and used to construct 

Figures 4(e) and 4(f) was first calculated on the stretched model grid at the levels where 
thermodynamic quantities are defined. The vertical perturbation pressure gradient was 
determined by fitting a quadratic function to three successive levels ,  and  at which 
the perturbation pressure has values ,  and , respectively. Then  

 (16) 

 where . 
 

8  References 
 

This article is protected by copyright. All rights reserved.



    
Anthes RA. 1974. The dynamics and energetics of mature tropical cyclones.  Rev. 

Geophys. Space Phys, 12: 495-522 
Bryan GH, Fritsch JM. 2002. A benchmark simulation for moist nonhydrostatic numerical 

models.   Mon. Weather Rev., bf 130: 2917â€“2928. 
rnivec N, Smith RK, Kilroy G. 2016. Dependence of tropical cyclone intensification rate 

on sea surface temperature.   Q. J. R. Meteorol. Soc.,  142: 1618-1627. 
DiMego GJ, Bosart LF. 1982. The transformation of tropical storm Agnes into an 

extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets.   Mon. Weather 
Rev., bf 110: 412-433.  

This article is protected by copyright. All rights reserved.



 Dunion JP. 2011. Rewriting the climatology of the tropical North Atlantic and Carribean 
sea atmosphere. J. Clim,  24: 893â€“908. 

Emanuel K. 2004. Tropical cyclone energetics and structure. In Atmospheric turbulence 
and mesoscale meteorology, E. Fedorovich, R. Rotunno and B. Stevens, editors, Cambridge 
University Press, pp280. 

Frank WM. 1977. The structure and energetics of the tropical cyclone ll. Dynamics and 
energetics.   Mon. Weather Rev.,  105: 1136-1160. 

Gill AE. 1982. Atmosphere-Ocean Dynamics. New York: Academic. 4th ed., 662pp 
Hogsett W, Zhang D-L. 2009. Numerical simulation of Hurricane Bonnie (1998). Part III: 

Energetics.   J. Atmos. Sci.,  66: 2678-2696. 
Kilroy G, Smith RK, Montgomery MT. 2016. Why do model tropical cyclones grow 

progressively in size and decay in intensity after reaching maturity?   J. Atmos. Sci.,  73: 487-503. 
Kurihara Y. 1975. 1975: Budget analysis of a tropical cyclone simulated in an 

axisymmetric numerical model.   J. Atmos. Sci., ,  32: 25-59. 
McWilliams JC. 2011. Fundamentals of geophysical fluid dynamics. Cambridge University 

Press, 283pp. 
Mapes BE, Zuidema P. 1996: Radiative-dynamical consequences of dry tongues in the 

tropical troposphere.   J. Atmos. Sci.,  53: 620-638. 
Montgomery MT, Smith RK. 2017a: Recent developments in the fluid dynamics of 

tropical cyclones. Annu. Rev. Fluid Mech.,  49: 1-33, doi:10.1146/annurev-fluid-010816-060022. 
Montgomery MT, Smith RK. 2017b: On the applicability of linear, axisymmetric dynamics 

in intensifying and mature tropical cyclones. Fluids,  2: 69. doi:10.3390/fluids2040069. 
Ooyama K. 1969: Numerical simulation of the life-cycle of tropical cyclones.   J. Atmos. 

Sci.,  26: 3-40. 
Palmén E, Jordan CL. 1955. Note on the release of kinetic energy in tropical cyclones. 

Tellus,  7: 186-189. 
Palmén E, Riehl H. 1957. Budget of angular momentum and energy in tropical storms.  J. 

Meteor.,  14: 150-159. 
Peixoto JP, Oort AH. 1992 Physics of climate. American Institute of Physics, New York, p 

520. 
Smith RK. 2006. Accurate determination of a balanced axisymmetric vortex. Tellus,  58A: 

98-103. 
Smith RK, Vogl S, 2008: A simple model of the hurricane boundary layer revisited. Q. J. R. 

Meteorol. Soc.,  134: 337-351. 
Smith RK, Montgomery MT, 2016: The efficiency of diabatic heating and tropical cyclone 

intensification. Q. J. R. Meteorol. Soc.,  142: 2081-2086. 
Smith RK Montgomery MT Nguyen SV. 2009: Tropical cyclone spin up revisited. Q. J. R. 

Meteorol. Soc.,  135: 1321-1335. 

This article is protected by copyright. All rights reserved.



Tuleya RE, Kurihra Y. 1975. The energy and angular momentum budgets of a three-
dimensional tropical cyclone model.   J. Atmos. Sci.,  32: 287-301. 

Wang Y, Cui X, Li, X, Zhang W, Huang Y. 2016. Kinetic energy budget during the genesis 
period of Tropical Cyclone Durian (2001) in the South China Sea.   Mon. Weather Rev.,  144: 
2831-854. 

Zhang JA Rogers RF Nolan DS and Marks FD 2011: On the characteristic height scales of 
the hurricane boundary layer.   Mon. Weather Rev.,  139: 2523-2535. 

 

This article is protected by copyright. All rights reserved.



fig3.eps

This article is protected by copyright. All rights reserved.



fig3.eps

This article is protected by copyright. All rights reserved.



fig4a.eps

This article is protected by copyright. All rights reserved.



fig4a.eps

This article is protected by copyright. All rights reserved.



fig4b.eps

This article is protected by copyright. All rights reserved.



fig4b.eps

This article is protected by copyright. All rights reserved.



fig6a.eps

This article is protected by copyright. All rights reserved.



fig6a.eps

This article is protected by copyright. All rights reserved.



fig6b.eps

This article is protected by copyright. All rights reserved.



fig6b.eps

This article is protected by copyright. All rights reserved.



GraphicalFigure.jpg

This article is protected by copyright. All rights reserved.



GraphicalFigure.jpg

This article is protected by copyright. All rights reserved.



The generation of kinetic energy in tropical cyclones revisited 

 

Roger K. Smith\affil{a}\corrauth, Michael T. Montgomery\affil{b} and Gerard Kilroy\affil{a} 

 

\address{\affilnum{a} Meteorological Institute, Ludwig Maximilians University of Munich, Munich, 
Germany \\\affilnum{b} Dept. of Meteorology, Naval Postgraduate School, Monterey, CA } 

 

\corraddr{Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, 
Theresienstr. 37, 80333 Munich, Germany. E-mail: roger.smith@lmu.de} 

 

The figure shows the radius-height structure of the azimuthally averaged pressure work term identified 
by Anthes (1974) as the dominant generation term in the global kinetic energy equation near the end of 
the period of rapid intensification of an idealized tropical cyclone simulation. It shows several regions of 
energy generation and consumption, which because the averaged radial pressure gradient is 
everywhere positive, reflects the structure of the radial velocity. It is seen that the net global generation 
of kinetic energy is the residual after the cancellation of large positive and negative contributions. There 
is a large generation of kinetic energy in the frictional boundary layer and only a small contribution from 
the classical spin up mechanism. 

 

 

This article is protected by copyright. All rights reserved.



The generation of kinetic energy in tropical cyclones revisited 

 

Roger K. Smith\affil{a}\corrauth, Michael T. Montgomery\affil{b} and Gerard Kilroy\affil{a} 

 

\address{\affilnum{a} Meteorological Institute, Ludwig Maximilians University of Munich, Munich, 
Germany \\\affilnum{b} Dept. of Meteorology, Naval Postgraduate School, Monterey, CA } 

 

\corraddr{Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, 
Theresienstr. 37, 80333 Munich, Germany. E-mail: roger.smith@lmu.de} 

 

The figure shows the radius-height structure of the azimuthally averaged pressure work term identified 
by Anthes (1974) as the dominant generation term in the global kinetic energy equation near the end of 
the period of rapid intensification of an idealized tropical cyclone simulation. It shows several regions of 
energy generation and consumption, which because the averaged radial pressure gradient is 
everywhere positive, reflects the structure of the radial velocity. It is seen that the net global generation 
of kinetic energy is the residual after the cancellation of large positive and negative contributions. There 
is a large generation of kinetic energy in the frictional boundary layer and only a small contribution from 
the classical spin up mechanism. 

 

 

This article is protected by copyright. All rights reserved.



Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 1–10 (2018)

1

2

The generation of kinetic energy in tropical cyclones revisited3

Roger K. Smitha∗, Michael T. Montgomeryb and Gerard Kilroya
4

a Meteorological Institute, Ludwig Maximilians University of Munich, Munich, Germany5

b Dept. of Meteorology, Naval Postgraduate School, Monterey, CA6

∗Correspondence to: Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, Theresienstr. 37,7

80333 Munich, Germany. E-mail: roger.smith@lmu.de8

9

Many previous diagnoses of the global kinetic energy for a tropical cyclone have

given prominence to a global integral of a pressure-work term in the generation of

kinetic energy. However, in his erudite textbook of atmospheric and oceanic dynamics,

Gill (1982) derives a form of the kinetic energy equation in which there is no such

explicit source term. In this paper we revisit the interpretations of the generation of

kinetic energy given previously in the light of Gill’s analysis and compare the various

interpretations, which are non-unique.

Further, even though global energetics provide a constraint on the flow evolution, in

the context of the kinetic energy equation, they conceal important aspects of energy

generation and consumption, a finding that highlights the limitations of a global kinetic

energy budget in revealing the underlying dynamics of tropical cyclones.
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1. Introduction12

In a classical review paper, Anthes (1974, section DI) summarized the global energetics of tropical cyclones, based in part on the13

work of Palmén and Jordan (1955) and Palmén and Riehl (1957). In this review he argues that the kinetic energy is dominated by the14

horizontal velocity components and he derives an expression for the rate-of-generation of kinetic energy, showing that “The important15

source of kinetic energy production in the hurricane is the radial flow toward lower pressure in the inflow layer, represented by u∂p/∂r.”16

(Here u is the radial velocity component, r is the radius and p is the pressure). In a similar vein, Palmén and Riehl op. cit. note that ”the17

generation depends on the vertical correlation between radial flow component and pressure gradient which, for production of kinetic18

energy, must be positive, i.e., the strongest inflow must occur at the strongest inward directed pressure gradient. They conclude that19

“kinetic energy production within the cyclone can take place only if the cyclone is of the warm core type.” Anthes goes on to argue that20

“This inflow is a result of surface friction, which reduces the tangential wind speed and thereby destroys the gradient balance, so that21

the inward pressure gradient force exceeds the Coriolis and centripetal forces. In the warm core low the maximum pressure gradient22

(∂p/∂r < 0)∗ occurs just above the surface layer, at which the inflow (u < 0) is maximum in magnitude. In the outflow layer, where23

the radial flow is reversed, the pressure gradient is much weaker. The result is a net production of kinetic energy, dominated by the24

contribution from the inflow region.”25

The foregoing interpretations seem at odds with the kinetic energy equation in flux form presented by Gill (1982) in which the term26

−u∂p/∂r does not appear. Nevertheless, in the context of tropical cyclones, subsequent work has built on the formulation by Palmén27

and Riehl as reviewed by Anthes (e.g. Kurihara 1975, Tuleya and Kurihara 1975, Frank 1977, DiMego and Bosart 1982, Hogsett and28

Zhang 2009, Wang et al. 2016). The generation of kinetic energy in the context of the global climate is discussed by Peixoto and Oort29

(1992, section 13.2).30

The purpose of this paper is to reconcile the different interpretations of kinetic energy generation and to calculate the various terms31

in the kinetic energy budget from an idealized high-resolution numerical simulation of a tropical cyclone.32

2. Kinetic energy equations33

In its most basic form, the momentum equation may be written as34

∂u

∂t
+ u · ∇u+ f ∧ u = −

1

ρ
∇p− gk− F (1)

∗Presumably Anthes meant ∂p/∂r > 0.
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Kinetic energy in tropical cyclones 2

where u is the three dimensional velocity vector, p is the pressure, ρ is the density, F is the frictional force opposing the motion, f = fk,35

f is the Coriolis parameter (2Ω sinφ, where φ is latitude and Ω is the earth’s rotation rate), g is the acceleration due to gravity, and k is36

the unit vector in the vertical direction (here and below, all vector quantities are in bold type). For simplicity, an f-plane is assumed (f37

= constant) and the Coriolis terms proportional to the cosine of the latitude have been neglected as is customary for geophysical flow38

analyses off of the equator (e.g., McWilliams 2011).39

The kinetic energy equation is obtained by taking the scalar product Equation (1) with u using the identity u · ∇u = ∇( 12u
2) + ω ∧40

u, where ω = ∇∧ u is the vorticity vector. This procedure gives:41

∂

∂t
( 12u

2) + u · ∇( 12u
2) = −

1

ρ
u · ∇p− gw − u · F, (2)

where w = k · u is the vertical component of velocity. Note that the Coriolis force (−f ∧ u) does not appear in the energy equation42

because it is orthogonal to u.43

An alternative form of the energy equation is obtained by removing some hydrostatically-balanced reference pressure, pref (z),44

from (1), where dpref/dz = −gρref defines a reference density, ρref , that is a function of altitude z. Then, with the substitution45

p = pref (z) + p′ and ρ = ρref (z) + ρ′, the first two terms on the right-hand-side of Equation (1), −(1/ρ)∇p− gk, become46

−(1/ρ)∇p′ + bk, where b = −g(ρ− ρref )/ρ is the buoyancy force of an air parcel per unit mass. Then, Equation (2) becomes47

∂

∂t
( 12u

2) + u · ∇( 12u
2) = −

1

ρ
uh · ∇hp

′ + Pw − u · F, (3)

where uh is the horizontal velocity vector, ∇h is the horizontal gradient operator and48

P = −
1

ρ

∂p

∂z
− g = −

1

ρ

∂p′

∂z
+ b (4)

is the net vertical perturbation gradient force per unit mass. Despite the explicit appearance of p′ in the first term on the right-hand-side,49

all the terms in Equation (3) are independent of the reference pressure pref (z), since, in particular, uh · ∇hpref (z) = 0. For simplicity,50

we take pref (z) and ρref (z) to be the ambient pressure and density, respectively, assuming that these are in hydrostatic equilibrium.51

Then p′ vanishes at large distances from the vortex axis.52

We examine now the different forms of Equation (3) derived by Anthes (1974), Gill (1982), and others beginning with a slight53

modification of Gill’s formulation.54

2.1. Modified Gill’s formulation55

In essence, Gill’s formulation of the kinetic energy equation is as follows. Using the result that for any scalar field, γ,56

ρ
Dγ

Dt
=

∂

∂t
(ργ) +∇ · (ργu), (5)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative (see Gill 1982, Equation 4.3.6)†, the material form of Equation (3) times ρ may57

be written in flux form as58

∂

∂t
( 12ρu

2) +∇ · FKE = p′∇h · uh + ρPw

+
∂(p′w)

∂z
− ρu · F, (6)

where59

FKE = (p′ + 1
2ρu

2)u, (7)

is the mechanical energy flux density vector (Gill, 1982, cf. Equation 4.6.4).60

The global kinetic energy budget can be obtained by integrating Equation (6) over a cylindrical volume of space, V , of radius R and61

height H centred on the storm and using the boundary conditions that u = 0 at r = 0, and w = 0 at z = 0 and z = H . Here, we use a62

cylindrical coordinate system (r, λ, z) centred on the vortex, where r is the radius, λ is the azimuth and z is the height. We denote an63

integral of the quantity χ over the volume V by64

[χ] =
1

πR2H

R
∫

0

rdr

2π
∫

0

dλ

H
∫

0

χdz

Then (6) becomes65

MODIFIED GILL’S FORM
d

dt

[

1
2ρu

2
]

= [p′∇h · uh] + [ρPw]− FKEG −D, (8)

66

†If the density refers to that of a moist air parcel consisting of dry air, water vapour and liquid water, the density is conserved only if the liquid water component is

suspended in the parcel. In the presence of precipitation, there will be a small source or sink of density associated with the flux divergence of falling precipitation. In what
follows, we will ignore the effects of this source/sink term in the kinetic energy budget.
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where67

FKEG =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u(p′ + 1
2ρu

2)
]

r=R
dz, (9)

is the flux of mechanical energy through the side boundary r = R, and for a Newtonian fluid with dynamic viscosity coefficient µ,68

D = [µΦν ], (10)

where, in cylindrical coordinates,69

Φν = 2

[

(

∂u

∂r

)2

+

(

1

r

∂v

∂λ
+

u

r

)2

+

(

∂w

∂z

)2
]

+

[

r
∂

∂r

(v

r

)

+
1

r

∂u

∂λ

]2

+

[

1

r

∂w

∂λ
+

∂v

∂z

]2

+

[

∂u

∂z
+

∂w

∂r

]2

−
2

3
(∇ · u)2 (11)

is the dissipation function‡ . Here, v is the tangential wind component.70

Since ∇h · uh is the fractional change in the horizontal area of an air parcel per unit time, the first term on the right-hand-side of71

Equation (8) is the cumulative effect of the kinetic energy generated locally when an air parcel with positive perturbation pressure72

expands in the horizontal or one with a negative perturbation pressure contracts in the horizontal. The second term on the right-hand-73

side of this equation represents the rate of kinetic energy production by air rising in the presence of a positive net vertical perturbation74

pressure gradient force (P > 0) and air sinking in the presence of a negative net vertical perturbation pressure gradient force (P < 0).75

In Gill’s original formulation, the net vertical perturbation pressure gradient force term in Equation (8) is replaced by a buoyancy force,76

which, by itself, is a non-unique force, and the second term on the right-hand-side is replaced by ∇ · u, which is the fractional change77

in volume of an air parcel. Note that, in Gill’s formulation, there is no term corresponding with u∂p/∂r (or equivalently u∂p′/∂r) in78

Anthes’ formulation of the problem, which a number of authors have argued is the key term in generating kinetic energy.79

2.2. Generalized Anthes’ formulation80

As noted above, Anthes reasonably supposes that the vertical velocity makes only a small contribution to the global kinetic energy and

his derivation of the kinetic energy equation is based on the horizontal momentum equations only and the neglect of the contribution

from 1
2w

2 in the kinetic energy. Nevertheless, Anthes retains the vertical velocity component in the advection term u · ∇u in Equation

(1) and u · ∇( 12u
2) in Equation (2). A slightly generalized form of Anthes’ equation follows directly from ρ times Equation (3), which

in flux form analogous to (6) is

∂

∂t
( 12ρu

2) +∇ · FKEA =

−uh · ∇hp
′ + ρPw − ρu · F, (12)

where81

FKEA = ( 12ρu
2)u. (13)

Again integrating over the cylinder, Equation (12) becomes82

GENERALIZED ANTHES’ FORM

d

dt

[

1
2ρu

2
]

= −[uh · ∇hp′] + [ρPw]− FKEA −D, (14)

83

where84

FKEA =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u( 12ρu
2)
]

r=R
dz. (15)

Equation (14) is a generalization of Anthes’ formulation to include the three-dimensional wind vector in the definition of kinetic energy85

and the rate of working of the net vertical perturbation gradient force per unit volume, [ρPw], which is a non-hydrostatic effect. As in86

Anthes’ original form, the pressure-work term, −[uh · ∇hp′], appears explicitly in the global form of the kinetic energy equation. For87

an axisymmetric flow, this term is simply [−u∂p/∂r] and, at first sight, one might question its prominence as a source of kinetic energy,88

since ∂p/∂r is not the only radial force acting on fluid parcels en route to the storm core. Above the frictional boundary layer, the radial89

pressure gradient is closely balanced by the sum of the centrifugal force and the radial component of the Coriolis force. Moreover, this90

‡Equation (8) is, in essence, the kinetic energy equation for the Reynolds averaged flow in which the quantity µ is a turbulent eddy counterpart. In this case, we are

presuming that a K-theory closure is adequate so that the Reynolds averaged equations look essentially like the Newtonian fluid formulation. Further, in the mechanical
energy flux through the side boundary in Equation (9) we have neglected the eddy diffusive radial flux of kinetic energy. Relative to the advective flux of kinetic energy,

the diffusive flux scales as the inverse Reynolds number of the flow, which is always small compared to unity outside of the surface layer. This conclusion is based on
recently obtained estimates of the turbulent eddy diffusivity observed in major hurricanes on the order of 50 − 100 m2s−1 (Zhang et al. 2011).
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source term does not appear in Gill’s formulation (cf. Eq. (8)), although it is replaced by the term [p′∇h · uh] and the boundary flux91

terms are different. Even so, one should bear in mind that even in the axisymmetric case, [−u∂p/∂r] is generating not only a radial92

contribution to the kinetic energy, but also an azimuthal contribution through the action of the generalized Coriolis force (f + v/r)u.93

The generation of this azimuthal contribution is implicit in the kinetic energy equation as the generalized Coriolis force does no work,94

but it does convert radial momentum to tangential momentum.95

3. Kinetic energy budget for an idealized simulation96

We examine now the generation terms in the two forms of the kinetic energy equation for the case of an idealized tropical cyclone97

simulation. We begin with a brief description of the numerical model and go on to present the results.98

3.1. The numerical model99

The numerical model used for this study is Bryan’s three-dimensional, nondydrostatic cloud model (CM1), version 16 (Bryan and100

Fritsch, 2002). The simulations relate to the prototype problem for tropical cyclone intensification, which considers the evolution of101

an initially axisymmetric, cloud-free, warm-cored, baroclinic vortex in a quiescent environment on an f-plane. The initial vortex is in102

thermal wind balance. A latitude of 20oN and a constant sea surface temperature of 28oC are assumed. The model configuration is103

more or less the same as described in section 2 of Črnivec et al. (2016). The differences are that, following the work of Mapes and104

Zuidema (1996), a more realistic time scale for Newtonian relaxation to the temperature field (10 days) is applied here instead of the105

previous default value in CM1 (12 h). Further, an open boundary condition is taken at lateral boundaries instead of rigid walls and the106

Dunion moist tropical sounding is used as the environmental sounding (Dunion 2011).107

The initial tangential wind speed has a maximum of 15 m s−1 at the surface at a radius of 100 km. The tangential wind speed108

decreases sinusoidally with height, becoming zero at a height of 20 km. Above this height, up to 25 km, the tangential wind is set to109

zero. The balanced pressure, density and temperature fields consistent with this prescribed tangential wind distribution are obtained110

using the method described by Smith (2006). The calculations are carried out for a period of 4 days with data output every 15 min.111

3.2. A few details of the simulation112

Figure 1 summarizes the vortex evolution in the simulation. Panel (a) shows time series of the maximum azimuthally-averaged113

tangential wind speed, Vmax, and panel (b) shows the radius Rvmax at which Vmax occurs. Typically, Vmax is located a few hundred114

meters above the surface, within a shallow inflow layer. The evolution is broadly similar to that described in Kilroy et al. (2016), who115

used a different numerical model and a much coarser horizontal resolution (horizontal grid spacing 5 km compared with 1 km used116

here). In brief, after a gestation for about a day during which deep convection becomes established inside Rvmax, the vortex undergoes117

a rapid intensification phase lasting about 36 h, before reaching a quasi-steady state. Initially Rvmax is located at a radius of 100 km,118

but contracts to a little more than 20 km after about 21
4 days. The most rapid contraction occurs during the rapid intensification phase119

as absolute angular momentum surfaces are drawn inwards quickly within and above the boundary layer.120

Figure 1(c) shows the outermost radius of gale-force winds, Rgales, defined here as the radius of 17 m s−1 azimuthally-averaged121

tangential winds at a height of 1 km, which is approximately at the top of the frictional boundary layer. Shown also is RgalesF , defined122

as the (outer) radius at which the total wind speed at any grid point at a height of 10 m is 17 m s−1. Both quantities serve as a measure123

of the vortex size, RgalesF being closest to the quantity used by forecasters§, but Rgales being a preferred measure from a theoretical124

viewpoint (Kilroy et al. 2016). The evolution of storm size based on RgalesF is similar to that based on Rgales, although Rgales always125

exceeds the value of RgalesF . After 4 days, Rgales exceeds RgalesF by about 80 km.126

Figure 2 shows vertical cross sections of the azimuthally-averaged, 3 h time averaged, radial and tangential velocity components, the127

vertical velocity component, and the M-surfaces during the intensification phase of the vortex. The time averages are centred on 36 h128

during the period of rapid intensification and at 60 h near the end of this period. The basic features of the flow are qualitatively similar129

at both times, but all three velocity components strengthen over the period, the M-surfaces moving inwards in the lower troposphere130

and outwards in the upper troposphere. The flow structure is similar to that which has been described in many previous studies (see e.g.131

the recent review by Montgomery and Smith 2017a and refs.) with a layer of strong shallow inflow marking the frictional boundary132

layer, a layer of weaker inflow in the lower troposphere, a region of strong outflow in the upper troposphere and a layer of enhanced133

inflow below the outflow. The maximum tangential wind speed occurs within, but near the top of the frictional boundary layer¶. Much134

of the ascent occurs in an annular region on the order of 50-60 km in radius. The region inside this annulus shows mostly descent.135

3.3. Kinetic energy evolution136

Figure 3 shows time series of the domain-averaged kinetic energy per unit mass,
[ 1
2ρu

2
]

, for domain radii 300 km and 500 km and a137

domain height of 20 km. As anticipated by Anthes (1974), this quantity is dominated by the horizontal velocity components: in fact, the138

curves for
[

1
2ρu

2
]

and
[

1
2ρu

2

h

]

essentially overlap. It follows that the contribution of the vertical velocity to the global kinetic energy139

is negligible. Notable features of the curves for both domain sizes are the slight decrease during the first 12 h on account of surface140

friction, followed by a rapid increase as the vortex intensifies. As time proceeds, the rate of increase progressively declines.141

§Based on the wind speed in a particular sector and not azimuthally averaged.
¶At 60 h, the tangential wind field exhibits a second local maximum in the eyewall. This is a transient feature that is presumably associated with a centrifugal wave near

the base of the eyewall (e.g. Montgomery and Smith 2017, p550) excited by an elevated pulse of boundary layer outflow shortly before. This feature is not seen at 48 h or
72 h and its presence doesn’t alter the findings concerning the kinetic energy budget.
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(a)

(b)

(c)

Figure 1. Time series of (a) maximum azimuthally-averaged tangential wind speed (Vmax). Panel (b) shows the radius Rvmax at which the maximum tangential wind
speed occurs (Vmax). Panel (c) shows the radius at which gale force winds occurs (Rgales), where Rgales calculated at a height of 1 km, and corresponds to the radius

of 17 m s−1 total winds outside the eyewall.

3.4. Kinetic energy generation: Anthes’ formulation142

Figure 4 shows time series of the principal terms in the generalized Anthes formulation (the right-hand-side of Equation (14)), excluding143

only the global dissipation term since the focus of the paper is on kinetic energy generation. For both domain radii, 300 km (Fig. 4(a))144

and 500 km (Fig. 4(a)), both the terms [−uh · ∇hp′] and [ρPw] are positive, but, perhaps surprisingly, the former term is not appreciably145

larger than the latter, even beyond 2 days when the differences are largest. The boundary flux term FKEA is virtually zero throughout146

the calculation. For the larger domain size (R = 500 km), the temporal behaviour of the various terms is similar, but, as expected, the147

magnitudes of the respective terms are appreciably smaller (Fig. 4(b)), since the largest contributions to the averages are from well148

inside a 300 km radius (note the different scales on the ordinate in Figs. 4(a) and 4(b)).149

The finding that the two terms [−uh · ∇hp′] and [ρPw] are not appreciably different in magnitude is at first sight surprising since,150

as shown in Figure 3, the contribution of the vertical velocity to the total kinetic energy is negligible. Moreover, the [ρPw] term151

does not appear in Anthes’ original formulation because the formulation was based on the horizontal momentum equations only. An152

explanation of this result is suggested by an examination of the radial-height structure of the azimuthally-averaged generation term153

before completing the columnar average, i.e. < −uh · ∇hp
′ >, where the angle brackets denote an azimuthal average. The structure154

of this average together with those of the other generation term, < ρPw >, at 36 h and 60 h, is shown in Figure 5. At both times,155

the Anthes generation term < −uh · ∇hp
′ > shows coherent regions of large kinetic energy generation and of large kinetic energy156

destruction. The main region of generation in panels (a) and (b) is at low levels, below about 2 km, where the strongest inflow occurs157

and where the inward directed radial pressure gradient force is particularly strong (panels (c) and (d) of Figure 5). There is a second158

region of generation in an annular column, mostly on the outer side of the eyewall updraught below about 9 km at 36 h and below159
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(a) (b)

(c) (d)

Figure 2. Left panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged tangential velocity component (blue contours) centred at 36 h and 60 h.
Superimposed are contours and shading of the averaged vertical velocity. Contour intervals are as follows. Tangential velocity: blue contours every 5 m s−1 , with a thick

black contour highlighting the 17 m s−1 contour. Vertical velocity: thin red contours every 0.05 m s−1 to 0.2 m s−1, thick red contour interval 0.5 m s−1, thin dashed red
contours indicate subsidence at intervals of 0.02 m s−1 . Right Panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged radial velocity component

together with the averaged vertical velocity centred at the same times. Contour intervals are as follows. Radial velocity: thick blue contours 4 m s−1 , dashed negative, thin
blue dashed contours every 0.5 m s−1 down to -3.5 m s−1 . Absolute angular momentum: thick black contours every 2 × 105 m2 s−1 , with the 6 × 105 m2 s−1 contour

highlighted in yellow.

Figure 3. Time series of the left-hand-side of Equation 14,
[

1

2
ρu2

]

(curves labelled uvw) compared to
[

1

2
ρu2

h

]

(curves labelled uv) for cylinders of 300 km and 500 km.
The curves for each cylinder size lie essentially on top of each other so that only a single curve is evident. The curves for the 500 km domain are labelled with a ‘5’.

about 12 km at 60 h. The generation terms in panels (a) and (b) are similar in structure and magnitude to that shown by Kurihara (1975,160

Figure 42, upper right) for a lower resolution axisymmetric simuulation.161

Since the radial pressure gradient is positive at all heights [panels (c) and (d) of Figure 5], these generation regions must be ones in162

which there is generally inflow‖. For the same reason, where there is outflow, there is kinetic energy removal as seen in the two163

principal coherent regions in panels (a) and (b) where < −uh · ∇hp
′ >< 0. It follows that the computed value of [−uh · ∇hp′]164

is the remainder resulting from the cancellation of two comparatively large contributions from < uh · ∇hp
′ > of opposite sign,165

namely < −uh · ∇hp
′ >+ and < −uh · ∇hp

′ >−, the former being the sum of all positive values of −uh · ∇hp
′ and the latter166

< −uh · ∇hp
′ >− to be the sum of all negative values. This large cancellation is evident in the time series shown in Figure 4.167

In summary, a substantial fraction of the kinetic energy that is generated is removed in regions where there is outflow and the residual168

is relatively small, comparable, indeed, with the kinetic energy generated by the rate-of-working of the net vertical perturbation pressure169

gradient force (buoyancy plus perturbation pressure gradient), principally in the region of diabatically-forced ascent. The structure of170

the net vertical perturbation pressure gradient force at 36 h and 60 h is shown in panels (e) and (f) of Figure 5. As expected, this force171

is concentrated in an annular region overlapping the region of diabatic heating.172

3.5. Kinetic energy generation (Gill’s formulation)173

Figure 6 shows time series of the principal terms in the modified Gill formulation (the right-hand-side of Equation (8)), excluding again174

the global dissipation term. In this formulation, the term [p′∇h · uh] is positive with mean amplitude and fluctuations about this mean175

‖Note that eddy effects are included in all generation terms.
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(a) (b)

Figure 4. Time series of the kinetic energy tendency terms on the right-hand-side of Equation (14), the Anthes’ formulation, averaged over a cylinder of size (a) 300 km

and (b) 500 km. Units on the ordinate are 10−3 W m−3 . The dissipation term is not shown. A1 stands for [−uh · ∇hp′], FK for FKEA and PW for [ρPw]. A1+ and

A1- stand for the contributions to A1 from regions where the argument −uh · ∇hp
′ is positive and negative, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Radius-height cross sections of azimuthally-averaged quantities in Equation (14), before performing the columnar average: < −uh · ∇hp
′ > (panels (a), (b));

and < ρPw > (panels (e), (f)), at 36 h (left panels) and 60 h (right panels). Panels (c) and (d) show similar cross sections of < ∂p′/∂r > at these times. Contour intervals
are as follows. Panels (a), (b), (e) and (f): thick contours 5 × 10−2 W m−3: thin contours 1 × 10−2 W m−3 . Solid red contours positive, dashed blue contours negative.

Panels (c) and (d): thin contours 0.2 × 10−2 Pa m−1 to 0.8 × 10−2 Pa m−1; medium thick contours 1.0 × 10−2 Pa m−1 to 5.0 × 10−2 Pa m−1; thick contours every

5.0 × 10−2 Pa m−1 . Numbers indicated on the side bar should be multiplied by 10−2.

increasing with time during the 4 day calculation [Fig. 6(b)]. For the first day, the term is a little less than the [ρPw] term, but thereafter176

becomes progressively larger. The increasing energy source represented by the sum of the two foregoing terms is opposed, in part, by177

the net outward flux of mechanical energy through the radial boundary, FKEG.178
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(a) (b)

(c) (d)

Figure 6. Time series of the kinetic energy tendency terms: [p′∇h · uh] (denoted by G1); [ρPw] (denoted PW) and FKEG (denoted FK) in the modified Gill formulation
[Equation (8) averaged over a cylinder of size (a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W m−3 . Panels (c) and (d) show the azimuthally averaged

terms < p′∇h · uh > in Equation (8) at 36 h and 60 h, respectively. Contour intervals are: thick contours 5 × 10−2 W m−3: thin contours 1 × 10−2 W m−3. Solid red

contours positive, dashed blue contours negative. Numbers indicated on the side bar should be multiplied by 10−2 .

Figure 7. Sum of the terms for Gill’s and Anthes’ formulation excluding the dissipation term for cylinders of radius R = 300 km and 500 km. Values on the ordinate have
been multiplied by 103 for plotting purposes. The two curves for each value of R lie essentially on top of each other.

Panels (c) and (d) of Figure 6 show the structure of the term < p′∇h · uh >, again 36 h and 60 h. The radial and vertical integral179

of this term form the cylindrical average [p′∇h · uh] in the modified Gill’s formulation of the energy equation. The qualitative radius-180

height structure of < p′∇h · uh > at the two times shown is less easy to infer from the solutions in Figure 2. Moreover, as shown in181

Figure 6, there is significant cancellation between the term [p′∇h · uh] and the boundary flux term in Gill’s formulation [Equation (8)].182

For this reason, the Anthes’ formulation of the energy equation would seem to be preferable to Gill’s formulation, even though both183

formulations are correct and give the same tendency of kinetic energy over the control volume of integration (see next subsection).184

3.6. Total kinetic energy generation185

A check on the foregoing calculations is provided by calculating the total tendency of kinetic energy generation, which is the sum of186

all the terms on the right-hand-side of Equations (8) or (14). This sum should be the same for each formulation. That this is the case is187

verified in Figure 7, which shows the sum for each domain size. As expected, the curves for the two formulations are coincident.188

4. Discussion189

Anthes’ statement noted in the Introduction that “the important source of kinetic energy production in the hurricane is the radial flow190

toward lower pressure in the inflow layer, represented by −u∂p/∂r” may seem at first sight problematic because, above the boundary191
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layer, the radial pressure gradient is very closely in balance with sum of centrifugal and Coriolis forces. Thus the energy source192

associated with −u∂p/∂r might appear, at least at first sight, to be a gross overestimate. However, the kinetic energy equation doesn’t193

recognize the balance constraint and, in this equation, the radial pressure gradient acts to generate not only kinetic energy of radial194

motion, but also that of tangential motion through the action of the generalized Coriolis force (f + v/r)u, a term that appears in the195

tangential momentum equation in cylindrical coordinates. This is despite the fact that the generalized Coriolis force does not appear196

explicitly in the kinetic energy equation.197

As noted also in the Introduction, Anthes recognized that much of the inflow into the storm is “ ... a result of surface friction, which198

reduces the tangential wind speed and thereby destroys the gradient balance, so that the inward pressure gradient force exceeds the199

Coriolis and centripetal∗∗ forces” and he pointed out that “In the warm core low the maximum pressure gradient (−∂p/∂r < 0 [sign200

corrected: our insertion]) occurs at the lowest level, at which the inflow (u < 0) is maximum. In the outflow layer, where the radial flow201

is reversed, the pressure gradient is much weaker. The result is a net production of kinetic energy, dominated by the contribution from202

the inflow region”. While this view is broadly supported by the calculations presented herein, the calculations provide a sharper view203

of the net production of kinetic energy indicating a region of significant kinetic energy generation accompanying inflow throughout204

the lower troposphere above the boundary layer as well as significant regions where kinetic energy is consumed as air flows outwards,205

against the radial pressure gradient, above the boundary layer. Indeed, the generation above the boundary layer is a manifestation of spin206

up by the classical mechanism articulated by Ooyama (1969), while the generation within the boundary layer, highlighted by Anthes,207

is a manifestation of the nonlinear boundary layer spin up mechanism articulated by Smith and Vogl (2008), Smith et al. (2009), Smith208

and Montgomery (2016) and Montgomery and Smith (2017b).209

Anthes argues that the boundary layer “ ... must be responsible for a net gain of kinetic energy” even though “a substantial dissipation210

of kinetic energy in the hurricane occurs in the boundary layer through turbulent diffusion and ultimate loss of energy to the sea surface”.211

As a result, he is led to the paradox that “surface friction is responsible for a net increase in kinetic energy and without friction the212

hurricane could not exist.” The resolution of this paradox would appear to be Anthes’ de-emphasis of the role of the classical mechanism213

for spin up in the kinetic energy budget.214

The results of our study, especially the noted cancellation of relatively large generation and consumption contributions to the term215

[−uh · ∇hp′] points to limitations in the utility of a global kinetic energy budget in revealing the underlying dynamics of tropical216

cyclone intensification. An alternative approach would be to examine the energetics of individual air parcels as they move around some217

hypothetical circuit (see Emanuel (2004) and references), but this approach relies on assumptions about the circuits traversed, circuits218

that may or may not be realizable in reality.219

5. Conclusions220

We have re-examined the traditional theory for kinetic energy generation in a tropical cyclone used by Palmén and Jordan (1955),221

Palmén and Riehl (1957), Frank (1977), Hogsett and Zhang (2009) and succinctly summarized in the review article by Anthes (1974).222

We have compared this with an alternative interpretation of global kinetic energy generation in geophysical flows inspired by Gill223

(1982), noting that such interpretations are non-unique.224

We have shown that the net rate of production of kinetic energy is a comparatively small difference between the generation in regions225

of inflow and the magnitude of the consumption in regions of outflow, so much so, that this difference is comparable in magnitude with226

the rate of generation by the net vertical perturbation pressure gradient force. The latter effect was not contained in Anthes’ original227

formulation, which was based only on the horizontal momentum equations.228

We pointed out that the kinetic energy generation term in Anthes’ formulation involving the radial pressure gradient does not appear229

in Gill’s formulation of the kinetic energy equation or our modification thereof. It is replaced by a term comprising the global integral230

of the rate of working by perturbation pressure ([p′∇h · uh]) as the flow expands in the horizontal. However, this generation term is231

largely compensated in the modified Gill formulation by the boundary flux of mechanical energy (FKEG). The fact that the boundary232

flux of kinetic energy in the Anthes formulation (FKEA) is typically negligible, as well as the difficulty in anticipating the structure of233

the term [p′∇h · uh] in a tropical cyclone are factors weighing in favour of using Anthes’ formulation when applied to the generation234

of kinetic energy in a tropical cyclone. However, in the light of the large cancellation of positive and negative values in the radial235

pressure-work term, the contribution from the rate of working of the net vertical force is non-negligible in comparison and should be236

included in any global kinetic energy budget.237

While global energetics provide a constraint on flow evolution, we have shown in the context of the kinetic energy equation that238

they conceal important aspects of energy generation and consumption. This finding highlights the limitations of a global kinetic energy239

budget in revealing the underlying dynamics of tropical cyclones.240
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7. Appendix: Calculation of the net vertical force, P246

The net vertical force per unit mass, P , defined in Equation (4) and used to construct Figures 5(e) and 5(f) was first calculated on247

the stretched model grid at the levels where thermodynamic quantities are defined. The vertical perturbation pressure gradient was248

determined by fitting a quadratic function to three successive levels zi−1, zi and zi+1 at which the perturbation pressure has values249

∗∗Presumably, Anthes means the centrifugal force.
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p′i−1, p′i and p′i+1, respectively. Then250

(

∂p′

∂z

)

i

=
(p′i+1 − p′i)dz

2
i − (p′i−1 − p′i)dz

2
i+1

dzi+1dzi(zi+1 − zi−1)
(16)

where dzi = zi − zi−1.251
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Many previous diagnoses of the global kinetic energy for a tropical cyclone have

given prominence to a global integral of a pressure-work term in the generation

of kinetic energy. However, in his erudite textbook of atmospheric and oceanic

dynamics, Gill (1982) derives a form of the kinetic energy equation in which

there is no such explicit source term. In this paper we revisit the interpretations

of the generation of kinetic energy given previously in the light of Gill’s analysis

and compare the various interpretations, which are non-unique.

Further, even though global energetics provide a constraint on the flow

evolution, in the context of the kinetic energy equation, they conceal important

aspects of energy generation and consumption, a finding that highlights the

limitations of a global kinetic energy budget in revealing the underlying

dynamics of tropical cyclones.
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1. Introduction

In a classical review paper, Anthes (1974, section DI)
summarized the global energetics of tropical cyclones,

based in part on the work of Palmén and Jordan (1955)
and Palmén and Riehl (1957). In this review he argues that

the kinetic energy is dominated by the horizontal velocity
components and he derives an expression for the rate-of-

generation of kinetic energy, showing that “The important
source of kinetic energy production in the hurricane is

the radial flow toward lower pressure in the inflow layer,
represented by u∂p/∂r.” (Here u is the radial velocity

component, r is the radius and p is the pressure). In a similar
vein, Palmén and Riehl op. cit. note that ”the generation

depends on the vertical correlation between radial flow
component and pressure gradient which, for production

of kinetic energy, must be positive, i.e., the strongest
inflow must occur at the strongest inward directed pressure

gradient. They conclude that “kinetic energy production
within the cyclone can take place only if the cyclone is of
the warm core type.” Anthes goes on to argue that “This

inflow is a result of surface friction, which reduces the
tangential wind speed and thereby destroys the gradient

balance, so that the inward pressure gradient force exceeds
the Coriolis and centripetal forces. In the warm core low
the maximum pressure gradient (∂p/∂r < 0)1 occurs just
above the surface layer, at which the inflow (u < 0) is
maximum in magnitude. In the outflow layer, where the
radial flow is reversed, the pressure gradient is much
weaker. The result is a net production of kinetic energy,
dominated by the contribution from the inflow region.”

The foregoing interpretations seem at odds with the
kinetic energy equation in flux form presented by Gill
(1982) in which the term −u∂p/∂r does not appear.
Nevertheless, in the context of tropical cyclones, subsequent
work has built on the formulation by Palmén and Riehl
as reviewed by Anthes (e.g. Kurihara 1975, Tuleya and
Kurihara 1975, Frank 1977, DiMego and Bosart 1982,
Hogsett and Zhang 2009, Wang et al. 2016). The generation
of kinetic energy in the context of the global climate is
discussed by Peixoto and Oort (1992, section 13.2).

The purpose of this paper is to reconcile the different
interpretations of kinetic energy generation and to calculate
the various terms in the kinetic energy budget from an

1Presumably Anthes meant ∂p/∂r > 0.
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idealized high-resolution numerical simulation of a tropical
cyclone.

2. Kinetic energy equations

In its most basic form, the momentum equation may be
written as

∂u

∂t
+ u · ∇u+ f ∧ u = −

1

ρ
∇p− gk− F (1)

where u is the three dimensional velocity vector, p is the
pressure, ρ is the density, F is the frictional force opposing
the motion, f = fk, f is the Coriolis parameter (2Ω sinφ,
where φ is latitude and Ω is the earth’s rotation rate), g is
the acceleration due to gravity, and k is the unit vector in
the vertical direction (here and below, all vector quantities
are in bold type). For simplicity, an f-plane is assumed
(f = constant) and the Coriolis terms proportional to the
cosine of the latitude have been neglected as is customary
for geophysical flow analyses off of the equator (e.g.,
McWilliams 2011).

The kinetic energy equation is obtained by taking the
scalar product Equation (1) with u using the identity u ·
∇u = ∇(12u

2) + ω ∧ u, where ω = ∇ ∧ u is the vorticity
vector. This procedure gives:

∂

∂t
(12u

2) + u · ∇(12u
2) = −

1

ρ
u · ∇p− gw − u ·F, (2)

where w = k · u is the vertical component of velocity. Note
that the Coriolis force (−f ∧ u) does not appear in the
energy equation because it is orthogonal to u.

An alternative form of the energy equation is obtained
by removing some hydrostatically-balanced reference
pressure, pref (z), from (1), where dpref/dz = −gρref
defines a reference density, ρref , that is a function of
altitude z. Then, with the substitution p = pref (z) + p′ and
ρ = ρref (z) + ρ′, the first two terms on the right-hand-side
of Equation (1), −(1/ρ)∇p− gk, become −(1/ρ)∇p′ +
bk, where b = −g(ρ− ρref )/ρ is the buoyancy force of an
air parcel per unit mass. Then, Equation (2) becomes

∂

∂t
(12u

2) + u · ∇(12u
2) = −

1

ρ
uh · ∇hp

′ + Pw − u · F,

(3)
where uh is the horizontal velocity vector, ∇h is the
horizontal gradient operator and

P = −
1

ρ

∂p

∂z
− g = −

1

ρ

∂p′

∂z
+ b (4)

is the net vertical perturbation gradient force per unit
mass. Despite the explicit appearance of p′ in the first
term on the right-hand-side, all the terms in Equation
(3) are independent of the reference pressure pref (z),
since, in particular, uh · ∇hpref (z) = 0. For simplicity, we
take pref (z) and ρref (z) to be the ambient pressure and
density, respectively, assuming that these are in hydrostatic
equilibrium. Then p′ vanishes at large distances from the
vortex axis.

We examine now the different forms of Equation (3)
derived by Anthes (1974), Gill (1982), and others beginning
with a slight modification of Gill’s formulation.

2.1. Modified Gill’s formulation

In essence, Gill’s formulation of the kinetic energy equation
is as follows. Using the result that for any scalar field, γ,

ρ
Dγ

Dt
=

∂

∂t
(ργ) +∇ · (ργu), (5)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative (see
Gill 1982, Equation 4.3.6)2, the material form of Equation
(3) times ρ may be written in flux form as

∂

∂t
(12ρu

2) +∇ ·FKE = p′∇h · uh + ρPw

+
∂(p′w)

∂z
− ρu · F, (6)

where
FKE = (p′ + 1

2ρu
2)u, (7)

is the mechanical energy flux density vector (Gill, 1982, cf.
Equation 4.6.4).

The global kinetic energy budget can be obtained by
integrating Equation (6) over a cylindrical volume of space,
V , of radius R and height H centred on the storm and using
the boundary conditions that u = 0 at r = 0, and w = 0 at
z = 0 and z = H . Here, we use a cylindrical coordinate
system (r, λ, z) centred on the vortex, where r is the radius,
λ is the azimuth and z is the height. We denote an integral
of the quantity χ over the volume V by

[χ] =
1

πR2H

R
∫

0

rdr

2π
∫

0

dλ

H
∫

0

χdz

Then (6) becomes

MODIFIED GILL’S FORM

d

dt

[

1
2ρu

2
]

= [p′∇h · uh] + [ρPw]− FKEG −D,

(8)

where

FKEG =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u(p′ + 1
2ρu

2)
]

r=R
dz, (9)

is the flux of mechanical energy through the side boundary
r = R, and for a Newtonian fluid with dynamic viscosity
coefficient µ,

D = [µΦν ], (10)

where, in cylindrical coordinates,

Φν = 2

[

(

∂u

∂r

)2

+

(

1

r

∂v

∂λ
+

u

r

)2

+

(

∂w

∂z

)2
]

+

[

r
∂

∂r

(v

r

)

+
1

r

∂u

∂λ

]2

+

[

1

r

∂w

∂λ
+

∂v

∂z

]2

+

[

∂u

∂z
+

∂w

∂r

]2

−
2

3
(∇ · u)2 (11)

2If the density refers to that of a moist air parcel consisting of dry air, water
vapour and liquid water, the density is conserved only if the liquid water
component is suspended in the parcel. In the presence of precipitation,
there will be a small source or sink of density associated with the flux
divergence of falling precipitation. In what follows, we will ignore the
effects of this source/sink term in the kinetic energy budget.
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is the dissipation function3. Here, v is the tangential wind
component.

Since ∇h · uh is the fractional change in the horizontal
area of an air parcel per unit time, the first term on the
right-hand-side of Equation (8) is the cumulative effect of
the kinetic energy generated locally when an air parcel with
positive perturbation pressure expands in the horizontal
or one with a negative perturbation pressure contracts
in the horizontal. The second term on the right-hand-
side of this equation represents the rate of kinetic energy
production by air rising in the presence of a positive
net vertical perturbation pressure gradient force (P > 0)
and air sinking in the presence of a negative net vertical
perturbation pressure gradient force (P < 0). In Gill’s
original formulation, the net vertical perturbation pressure
gradient force term in Equation (8) is replaced by a
buoyancy force, which, by itself, is a non-unique force,
and the second term on the right-hand-side is replaced by
∇ · u, which is the fractional change in volume of an air
parcel. Note that, in Gill’s formulation, there is no term
corresponding with u∂p/∂r (or equivalently u∂p′/∂r) in
Anthes’ formulation of the problem, which a number of
authors have argued is the key term in generating kinetic
energy.

2.2. Generalized Anthes’ formulation

As noted above, Anthes reasonably supposes that the
vertical velocity makes only a small contribution to the
global kinetic energy and his derivation of the kinetic
energy equation is based on the horizontal momentum
equations only and the neglect of the contribution from
1
2w

2 in the kinetic energy. Nevertheless, Anthes retains the
vertical velocity component in the advection term u · ∇u

in Equation (1) and u · ∇(12u
2) in Equation (2). A slightly

generalized form of Anthes’ equation follows directly from
ρ times Equation (3), which in flux form analogous to (6) is

∂

∂t
(12ρu

2) +∇ · FKEA =

−uh · ∇hp
′ + ρPw − ρu ·F, (12)

where

FKEA = (12ρu
2)u. (13)

Again integrating over the cylinder, Equation (12) becomes

GENERALIZED ANTHES’ FORM

d

dt

[

1
2ρu

2
]

= −[uh · ∇hp′] + [ρPw]− FKEA −D,

(14)

3Equation (8) is, in essence, the kinetic energy equation for the Reynolds
averaged flow in which the quantity µ is a turbulent eddy counterpart.
In this case, we are presuming that a K-theory closure is adequate so
that the Reynolds averaged equations look essentially like the Newtonian
fluid formulation. Further, in the mechanical energy flux through the side
boundary in Equation (9) we have neglected the eddy diffusive radial
flux of kinetic energy. Relative to the advective flux of kinetic energy,
the diffusive flux scales as the inverse Reynolds number of the flow,
which is always small compared to unity outside of the surface layer. This
conclusion is based on recently obtained estimates of the turbulent eddy
diffusivity observed in major hurricanes on the order of 50− 100 m2s−1

(Zhang et al. 2011).

where

FKEA =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u(12ρu
2)
]

r=R
dz. (15)

Equation (14) is a generalization of Anthes’ formulation to
include the three-dimensional wind vector in the definition
of kinetic energy and the rate of working of the net vertical

perturbation gradient force per unit volume, [ρPw], which
is a non-hydrostatic effect. As in Anthes’ original form,

the pressure-work term, −[uh · ∇hp′], appears explicitly
in the global form of the kinetic energy equation. For an

axisymmetric flow, this term is simply [−u∂p/∂r] and, at
first sight, one might question its prominence as a source
of kinetic energy, since ∂p/∂r is not the only radial force
acting on fluid parcels en route to the storm core. Above
the frictional boundary layer, the radial pressure gradient
is closely balanced by the sum of the centrifugal force and
the radial component of the Coriolis force. Moreover, this
source term does not appear in Gill’s formulation (cf. Eq.

(8)), although it is replaced by the term [p′∇h · uh] and
the boundary flux terms are different. Even so, one should

bear in mind that even in the axisymmetric case, [−u∂p/∂r]
is generating not only a radial contribution to the kinetic
energy, but also an azimuthal contribution through the
action of the generalized Coriolis force (f + v/r)u. The
generation of this azimuthal contribution is implicit in the
kinetic energy equation as the generalized Coriolis force
does no work, but it does convert radial momentum to
tangential momentum.

3. Kinetic energy budget for an idealized simulation

We examine now the generation terms in the two forms
of the kinetic energy equation for the case of an
idealized tropical cyclone simulation. We begin with a brief
description of the numerical model and go on to present the
results.

3.1. The numerical model

The numerical model used for this study is Bryan’s three-
dimensional, nondydrostatic cloud model (CM1), version
16 (Bryan and Fritsch, 2002). The simulations relate to
the prototype problem for tropical cyclone intensification,
which considers the evolution of an initially axisymmetric,
cloud-free, warm-cored, baroclinic vortex in a quiescent
environment on an f -plane. The initial vortex is in thermal
wind balance. A latitude of 20oN and a constant sea surface
temperature of 28oC are assumed. The model configuration
is more or less the same as described in section 2 of
Črnivec et al. (2016). The differences are that, following
the work of Mapes and Zuidema (1996), a more realistic
time scale for Newtonian relaxation to the temperature
field (10 days) is applied here instead of the previous
default value in CM1 (12 h). Further, an open boundary
condition is taken at lateral boundaries instead of rigid
walls and the Dunion moist tropical sounding is used as the
environmental sounding (Dunion 2011).

The initial tangential wind speed has a maximum of
15 m s−1 at the surface at a radius of 100 km. The
tangential wind speed decreases sinusoidally with height,
becoming zero at a height of 20 km. Above this height, up
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(a)

(b)

(c)

Figure 1. Time series of (a) maximum azimuthally-averaged tangential
wind speed (Vmax). Panel (b) shows the radius Rvmax at which the
maximum tangential wind speed occurs (Vmax). Panel (c) shows the radius
at which gale force winds occurs (Rgales), where Rgales calculated at a

height of 1 km, and corresponds to the radius of 17 m s−1 total winds
outside the eyewall.

to 25 km, the tangential wind is set to zero. The balanced
pressure, density and temperature fields consistent with this
prescribed tangential wind distribution are obtained using
the method described by Smith (2006). The calculations are
carried out for a period of 4 days with data output every 15
min.

3.2. A few details of the simulation

Figure 1 summarizes the vortex evolution in the simulation.
Panel (a) shows time series of the maximum azimuthally-
averaged tangential wind speed, Vmax, and panel (b) shows
the radius Rvmax at which Vmax occurs. Typically, Vmax

is located a few hundred meters above the surface, within
a shallow inflow layer. The evolution is broadly similar to
that described in Kilroy et al. (2016), who used a different

numerical model and a much coarser horizontal resolution
(horizontal grid spacing 5 km compared with 1 km used
here). In brief, after a gestation for about a day during
which deep convection becomes established inside Rvmax,
the vortex undergoes a rapid intensification phase lasting
about 36 h, before reaching a quasi-steady state. Initially
Rvmax is located at a radius of 100 km, but contracts to a
little more than 20 km after about 2 1

4 days. The most rapid
contraction occurs during the rapid intensification phase as
absolute angular momentum surfaces are drawn inwards
quickly within and above the boundary layer.

Figure 1(c) shows the outermost radius of gale-force
winds, Rgales, defined here as the radius of 17 m s−1

azimuthally-averaged tangential winds at a height of 1 km,
which is approximately at the top of the frictional boundary
layer. Shown also is RgalesF , defined as the (outer) radius
at which the total wind speed at any grid point at a height
of 10 m is 17 m s−1. Both quantities serve as a measure of
the vortex size, RgalesF being closest to the quantity used

by forecasters4, but Rgales being a preferred measure from
a theoretical viewpoint (Kilroy et al. 2016). The evolution
of storm size based on RgalesF is similar to that based
on Rgales, although Rgales always exceeds the value of
RgalesF . After 4 days, Rgales exceeds RgalesF by about 80
km.

Figure 2 shows vertical cross sections of the azimuthally-
averaged, 3 h time averaged, radial and tangential velocity
components, the vertical velocity component, and the M -
surfaces during the intensification phase of the vortex. The
time averages are centred on 36 h during the period of rapid
intensification and at 60 h near the end of this period. The
basic features of the flow are qualitatively similar at both
times, but all three velocity components strengthen over
the period, the M -surfaces moving inwards in the lower
troposphere and outwards in the upper troposphere. The
flow structure is similar to that which has been described
in many previous studies (see e.g. the recent review by
Montgomery and Smith 2017a and refs.) with a layer
of strong shallow inflow marking the frictional boundary
layer, a layer of weaker inflow in the lower troposphere,
a region of strong outflow in the upper troposphere and a
layer of enhanced inflow below the outflow. The maximum
tangential wind speed occurs within, but near the top of
the frictional boundary layer5. Much of the ascent occurs
in an annular region on the order of 50-60 km in radius. The
region inside this annulus shows mostly descent.

3.3. Kinetic energy evolution

Figure 3 shows time series of the domain-averaged kinetic

energy per unit mass,
[

1
2ρu

2
]

, for domain radii 300 km and
500 km and a domain height of 20 km. As anticipated by
Anthes (1974), this quantity is dominated by the horizontal

velocity components: in fact, the curves for
[

1
2ρu

2
]

and
[

1
2ρu

2

h

]

essentially overlap. It follows that the contribution
of the vertical velocity to the global kinetic energy is

4Based on the wind speed in a particular sector and not azimuthally
averaged.
5At 60 h, the tangential wind field exhibits a second local maximum in
the eyewall. This is a transient feature that is presumably associated with a
centrifugal wave near the base of the eyewall (e.g. Montgomery and Smith
2017, p550) excited by an elevated pulse of boundary layer outflow shortly
before. This feature is not seen at 48 h or 72 h and its presence doesn’t alter
the findings concerning the kinetic energy budget.
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(a) (b)

(c) (d)

Figure 2. Left panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged tangential velocity component (blue contours) centred
at 36 h and 60 h. Superimposed are contours and shading of the averaged vertical velocity. Contour intervals are as follows. Tangential velocity: blue
contours every 5 m s−1, with a thick black contour highlighting the 17 m s−1 contour. Vertical velocity: thin red contours every 0.05 m s−1 to 0.2 m
s−1, thick red contour interval 0.5 m s−1, thin dashed red contours indicate subsidence at intervals of 0.02 m s−1. Right Panels: Vertical cross sections
of the azimuthally-averaged, 3 hour time averaged radial velocity component together with the averaged vertical velocity centred at the same times.
Contour intervals are as follows. Radial velocity: thick blue contours 4 m s−1, dashed negative, thin blue dashed contours every 0.5 m s−1 down to -3.5
m s−1. Absolute angular momentum: thick black contours every 2× 105 m2 s−1, with the 6× 105 m2 s−1 contour highlighted in yellow.

negligible. Notable features of the curves for both domain
sizes are the slight decrease during the first 12 h on account
of surface friction, followed by a rapid increase as the
vortex intensifies. As time proceeds, the rate of increase
progressively declines.

3.4. Kinetic energy generation: Anthes’ formulation

Figure 4 shows time series of the principal terms in
the generalized Anthes formulation (the right-hand-side of
Equation (14)), excluding only the global dissipation term
since the focus of the paper is on kinetic energy generation.
For both domain radii, 300 km (Fig. 4(a)) and 500 km

(Fig. 4(a)), both the terms [−uh · ∇hp′] and [ρPw] are
positive6, but, perhaps surprisingly, the former term is not
appreciably larger than the latter, even beyond 2 days when
the differences are largest. The boundary flux term FKEA

is virtually zero throughout the calculation. For the larger
domain size (R = 500 km), the temporal behaviour of the
various terms is similar, but, as expected, the magnitudes
of the respective terms are appreciably smaller (Fig. 4(b)),
since the largest contributions to the averages are from well
inside a 300 km radius (note the different scales on the
ordinate in Figs. 4(a) and 4(b)).

The finding that the two terms [−uh · ∇hp′] and [ρPw]
are not appreciably different in magnitude is at first sight
surprising since, as shown in Figure 3, the contribution
of the vertical velocity to the total kinetic energy is

negligible. Moreover, the [ρPw] term does not appear in
Anthes’ original formulation because the formulation was
based on the horizontal momentum equations only. An

6The finite difference form of the vertical perturbation pressure gradient in

calculating the term [ρPw] is detailed in the appendix.

explanation of this result is suggested by an examination
of the radial-height structure of the azimuthally-averaged
generation term before completing the columnar average,

i.e. < −uh · ∇hp
′ >, where the angle brackets denote an

azimuthal average. The structure of this average together

with those of the other generation term, < ρPw >, at 36
h and 60 h, is shown in Figure 5. At both times, the
Anthes generation term < −uh · ∇hp

′ > shows coherent

regions of large kinetic energy generation and of large
kinetic energy destruction. The main region of generation

in panels (a) and (b) is at low levels, below about 2 km,
where the strongest inflow occurs and where the inward

directed radial pressure gradient force is particularly strong
(panels (c) and (d) of Figure 5). There is a second region
of generation in an annular column, mostly on the outer

side of the eyewall updraught below about 9 km at 36 h
and below about 12 km at 60 h. The generation terms in

panels (a) and (b) are similar in structure and magnitude to
that shown by Kurihara (1975, Figure 42, upper right) for a
lower resolution axisymmetric simuulation.

Since the radial pressure gradient is positive at all heights
[panels (c) and (d) of Figure 5], these generation regions

must be ones in which there is generally inflow7. For
the same reason, where there is outflow, there is kinetic

energy removal as seen in the two principal coherent
regions in panels (a) and (b) where < −uh · ∇hp

′ ><

0. It follows that the computed value of [−uh · ∇hp′]
is the remainder resulting from the cancellation of two
comparatively large contributions from < uh · ∇hp

′ > of

opposite sign, namely < −uh · ∇hp
′ >+ and < −uh ·

∇hp
′ >−, the former being the sum of all positive values of

−uh · ∇hp
′ and the latter < −uh · ∇hp

′ >− to be the sum

7Note that eddy effects are included in all generation terms.
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Figure 3. Time series of the left-hand-side of Equation 14,
[

1

2
ρu2

]

(curves labelled uvw) compared to
[

1

2
ρu2

h

]

(curves labelled uv) for
cylinders of 300 km and 500 km. The curves for each cylinder size lie
essentially on top of each other so that only a single curve is evident. The
curves for the 500 km domain are labelled with a ‘5’.

of all negative values. This large cancellation is evident in
the time series shown in Figure 4.

In summary, a substantial fraction of the kinetic energy

that is generated is removed in regions where there is

outflow and the residual is relatively small, comparable,

indeed, with the kinetic energy generated by the rate-of-

working of the net vertical perturbation pressure gradient

force (buoyancy plus perturbation pressure gradient),

principally in the region of diabatically-forced ascent. The

structure of the net vertical perturbation pressure gradient

force at 36 h and 60 h is shown in panels (e) and (f) of Figure

5. As expected, this force is concentrated in an annular
region overlapping the region of diabatic heating.

3.5. Kinetic energy generation (Gill’s formulation)

Figure 6 shows time series of the principal terms in the

modified Gill formulation (the right-hand-side of Equation

(8)), excluding again the global dissipation term. In this

formulation, the term [p′∇h · uh] is positive with mean

amplitude and fluctuations about this mean increasing with

time during the 4 day calculation [Fig. 6(b)]. For the

first day, the term is a little less than the [ρPw] term,

but thereafter becomes progressively larger. The increasing

energy source represented by the sum of the two foregoing

terms is opposed, in part, by the net outward flux of

mechanical energy through the radial boundary, FKEG.

Panels (c) and (d) of Figure 6 show the structure of

the term < p′∇h · uh >, again 36 h and 60 h. The radial

and vertical integral of this term form the cylindrical

average [p′∇h · uh] in the modified Gill’s formulation of

the energy equation. The qualitative radius-height structure

of < p′∇h · uh > at the two times shown is less easy to

infer from the solutions in Figure 2. Moreover, as shown in

Figure 6, there is significant cancellation between the term

[p′∇h · uh] and the boundary flux term in Gill’s formulation

[Equation (8)]. For this reason, the Anthes’ formulation of

the energy equation would seem to be preferable to Gill’s

formulation, even though both formulations are correct and

give the same tendency of kinetic energy over the control
volume of integration (see next subsection).

3.6. Total kinetic energy generation

A check on the foregoing calculations is provided by
calculating the total tendency of kinetic energy generation,
which is the sum of all the terms on the right-hand-side of
Equations (8) or (14). This sum should be the same for each
formulation. That this is the case is verified in Figure 7,
which shows the sum for each domain size. As expected,
the curves for the two formulations are coincident.

4. Discussion

Anthes’ statement noted in the Introduction that “the
important source of kinetic energy production in the
hurricane is the radial flow toward lower pressure in the
inflow layer, represented by −u∂p/∂r” may seem at first
sight problematic because, above the boundary layer, the
radial pressure gradient is very closely in balance with
sum of centrifugal and Coriolis forces. Thus the energy
source associated with −u∂p/∂r might appear, at least at
first sight, to be a gross overestimate. However, the kinetic
energy equation doesn’t recognize the balance constraint
and, in this equation, the radial pressure gradient acts
to generate not only kinetic energy of radial motion,
but also that of tangential motion through the action of
the generalized Coriolis force (f + v/r)u, a term that
appears in the tangential momentum equation in cylindrical
coordinates. This is despite the fact that the generalized
Coriolis force does not appear explicitly in the kinetic
energy equation.

As noted also in the Introduction, Anthes recognized
that much of the inflow into the storm is “ ... a result of
surface friction, which reduces the tangential wind speed
and thereby destroys the gradient balance, so that the inward
pressure gradient force exceeds the Coriolis and centripetal8

forces” and he pointed out that “In the warm core low the
maximum pressure gradient (−∂p/∂r < 0 [sign corrected:
our insertion]) occurs at the lowest level, at which the inflow
(u < 0) is maximum. In the outflow layer, where the radial
flow is reversed, the pressure gradient is much weaker. The
result is a net production of kinetic energy, dominated by
the contribution from the inflow region”. While this view is
broadly supported by the calculations presented herein, the
calculations provide a sharper view of the net production
of kinetic energy indicating a region of significant kinetic
energy generation accompanying inflow throughout the
lower troposphere above the boundary layer as well as
significant regions where kinetic energy is consumed as
air flows outwards, against the radial pressure gradient,
above the boundary layer. Indeed, the generation above
the boundary layer is a manifestation of spin up by the
classical mechanism articulated by Ooyama (1969), while
the generation within the boundary layer, highlighted by
Anthes, is a manifestation of the nonlinear boundary layer
spin up mechanism articulated by Smith and Vogl (2008),
Smith et al. (2009), Smith and Montgomery (2016) and
Montgomery and Smith (2017b).

Anthes argues that the boundary layer “ ... must be
responsible for a net gain of kinetic energy” even though
“a substantial dissipation of kinetic energy in the hurricane
occurs in the boundary layer through turbulent diffusion and
ultimate loss of energy to the sea surface”. As a result, he

8Presumably, Anthes means the centrifugal force.
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(a) (b)

Figure 4. Time series of the kinetic energy tendency terms on the right-hand-side of Equation (14), the Anthes’ formulation, averaged over a cylinder of

size (a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W m−3. The dissipation term is not shown. A1 stands for [−uh · ∇hp′], FK for FKEA

and PW for [ρPw]. A1+ and A1- stand for the contributions to A1 from regions where the argument −uh · ∇hp
′ is positive and negative, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Radius-height cross sections of azimuthally-averaged quantities in Equation (14), before performing the columnar average: < −uh · ∇hp
′ >

(panels (a), (b)); and < ρPw > (panels (e), (f)), at 36 h (left panels) and 60 h (right panels). Panels (c) and (d) show similar cross sections of < ∂p′/∂r >
at these times. Contour intervals are as follows. Panels (a), (b), (e) and (f): thick contours 5× 10−2 W m−3: thin contours 1× 10−2 W m−3. Solid red
contours positive, dashed blue contours negative. Panels (c) and (d): thin contours 0.2× 10−2 Pa m−1 to 0.8× 10−2 Pa m−1; medium thick contours
1.0× 10−2 Pa m−1 to 5.0× 10−2 Pa m−1; thick contours every 5.0× 10−2 Pa m−1. Numbers indicated on the side bar should be multiplied by
10−2.
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(a) (b)

(c) (d)

Figure 6. Time series of the kinetic energy tendency terms: [p′∇h · uh] (denoted by G1); [ρPw] (denoted PW) and FKEG (denoted FK) in the
modified Gill formulation [Equation (8) averaged over a cylinder of size (a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W m−3. Panels
(c) and (d) show the azimuthally averaged terms < p′∇h · uh > in Equation (8) at 36 h and 60 h, respectively. Contour intervals are: thick contours
5× 10−2 W m−3: thin contours 1× 10−2 W m−3. Solid red contours positive, dashed blue contours negative. Numbers indicated on the side bar
should be multiplied by 10−2.

Figure 7. Sum of the terms for Gill’s and Anthes’ formulation excluding
the dissipation term for cylinders of radius R = 300 km and 500 km.
Values on the ordinate have been multiplied by 103 for plotting purposes.
The two curves for each value of R lie essentially on top of each other.

is led to the paradox that “surface friction is responsible
for a net increase in kinetic energy and without friction the

hurricane could not exist.” The resolution of this paradox
would appear to be Anthes’ de-emphasis of the role of

the classical mechanism for spin up in the kinetic energy
budget.

The results of our study, especially the noted cancellation

of relatively large generation and consumption contribu-

tions to the term [−uh · ∇hp′] points to limitations in the
utility of a global kinetic energy budget in revealing the

underlying dynamics of tropical cyclone intensification. An
alternative approach would be to examine the energetics of

individual air parcels as they move around some hypothet-
ical circuit (see Emanuel (2004) and references), but this
approach relies on assumptions about the circuits traversed,
circuits that may or may not be realizable in reality.

5. Conclusions

We have re-examined the traditional theory for kinetic
energy generation in a tropical cyclone used by Palmén
and Jordan (1955), Palmén and Riehl (1957), Frank (1977),
Hogsett and Zhang (2009) and succinctly summarized in the
review article by Anthes (1974). We have compared this
with an alternative interpretation of global kinetic energy
generation in geophysical flows inspired by Gill (1982),
noting that such interpretations are non-unique.

We have shown that the net rate of production of kinetic
energy is a comparatively small difference between the
generation in regions of inflow and the magnitude of the
consumption in regions of outflow, so much so, that this
difference is comparable in magnitude with the rate of
generation by the net vertical perturbation pressure gradient
force. The latter effect was not contained in Anthes’ original
formulation, which was based only on the horizontal
momentum equations.

We pointed out that the kinetic energy generation term in
Anthes’ formulation involving the radial pressure gradient
does not appear in Gill’s formulation of the kinetic energy
equation or our modification thereof. It is replaced by a
term comprising the global integral of the rate of working

by perturbation pressure ([p′∇h · uh]) as the flow expands
in the horizontal. However, this generation term is largely

Copyright c© 2018 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 1–9 (2018)
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compensated in the modified Gill formulation by the
boundary flux of mechanical energy (FKEG). The fact
that the boundary flux of kinetic energy in the Anthes
formulation (FKEA) is typically negligible, as well as
the difficulty in anticipating the structure of the term

[p′∇h · uh] in a tropical cyclone are factors weighing in
favour of using Anthes’ formulation when applied to the
generation of kinetic energy in a tropical cyclone. However,
in the light of the large cancellation of positive and negative
values in the radial pressure-work term, the contribution
from the rate of working of the net vertical force is non-
negligible in comparison and should be included in any
global kinetic energy budget.

While global energetics provide a constraint on flow
evolution, we have shown in the context of the kinetic
energy equation that they conceal important aspects of
energy generation and consumption. This finding highlights
the limitations of a global kinetic energy budget in revealing
the underlying dynamics of tropical cyclones.
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7. Appendix: Calculation of the net vertical force, P

The net vertical force per unit mass, P , defined in Equation
(4) and used to construct Figures 5(e) and 5(f) was
first calculated on the stretched model grid at the levels
where thermodynamic quantities are defined. The vertical
perturbation pressure gradient was determined by fitting a
quadratic function to three successive levels zi−1, zi and
zi+1 at which the perturbation pressure has values p′i−1, p′i
and p′i+1, respectively. Then

(

∂p′

∂z

)

i

=
(p′i+1 − p′i)dz

2
i − (p′i−1 − p′i)dz

2
i+1

dzi+1dzi(zi+1 − zi−1)
(16)

where dzi = zi − zi−1.

8. References

Anthes RA. 1974. The dynamics and energetics of mature tropical
cyclones. Rev. Geophys. Space Phys,12: 495-522

Bryan GH, Fritsch JM. 2002. A benchmark simulation for moist
nonhydrostatic numerical models. Mon. Weather Rev., bf 130:
29172928.
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Many previous diagnoses of the global kinetic energy for a tropical cyclone have

given prominence to a global integral of a pressure-work term in the generation

of kinetic energy. However, in his erudite textbook of atmospheric and oceanic

dynamics, Gill (1982) derives a form of the kinetic energy equation in which

there is no such explicit source term. In this paper we revisit the interpretations

of the generation of kinetic energy given previously in the light of Gill’s analysis

and compare the various interpretations, which are non-unique.

Further, even though global energetics provide a constraint on the flow

evolution, in the context of the kinetic energy equation, they conceal important

aspects of energy generation and consumption, a finding that highlights the

limitations of a global kinetic energy budget in revealing the underlying

dynamics of tropical cyclones.
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1. Introduction

In a classical review paper, Anthes (1974, section DI)
summarized the global energetics of tropical cyclones,

based in part on the work of Palmén and Jordan (1955)
and Palmén and Riehl (1957). In this review he argues that

the kinetic energy is dominated by the horizontal velocity
components and he derives an expression for the rate-of-

generation of kinetic energy, showing that “The important
source of kinetic energy production in the hurricane is

the radial flow toward lower pressure in the inflow layer,
represented by u∂p/∂r.” (Here u is the radial velocity

component, r is the radius and p is the pressure). In a similar
vein, Palmén and Riehl op. cit. note that ”the generation

depends on the vertical correlation between radial flow
component and pressure gradient which, for production

of kinetic energy, must be positive, i.e., the strongest
inflow must occur at the strongest inward directed pressure

gradient. They conclude that “kinetic energy production
within the cyclone can take place only if the cyclone is of
the warm core type.” Anthes goes on to argue that “This

inflow is a result of surface friction, which reduces the
tangential wind speed and thereby destroys the gradient

balance, so that the inward pressure gradient force exceeds
the Coriolis and centripetal forces. In the warm core low
the maximum pressure gradient (∂p/∂r < 0)1 occurs just
above the surface layer, at which the inflow (u < 0) is
maximum in magnitude. In the outflow layer, where the
radial flow is reversed, the pressure gradient is much
weaker. The result is a net production of kinetic energy,
dominated by the contribution from the inflow region.”

The foregoing interpretations seem at odds with the
kinetic energy equation in flux form presented by Gill
(1982) in which the term −u∂p/∂r does not appear.
Nevertheless, in the context of tropical cyclones, subsequent
work has built on the formulation by Palmén and Riehl
as reviewed by Anthes (e.g. Kurihara 1975, Tuleya and
Kurihara 1975, Frank 1977, DiMego and Bosart 1982,
Hogsett and Zhang 2009, Wang et al. 2016). The generation
of kinetic energy in the context of the global climate is
discussed by Peixoto and Oort (1992, section 13.2).

The purpose of this paper is to reconcile the different
interpretations of kinetic energy generation and to calculate
the various terms in the kinetic energy budget from an

1Presumably Anthes meant ∂p/∂r > 0.
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idealized high-resolution numerical simulation of a tropical
cyclone.

2. Kinetic energy equations

In its most basic form, the momentum equation may be
written as

∂u

∂t
+ u · ∇u+ f ∧ u = −

1

ρ
∇p− gk− F (1)

where u is the three dimensional velocity vector, p is the
pressure, ρ is the density, F is the frictional force opposing
the motion, f = fk, f is the Coriolis parameter (2Ω sinφ,
where φ is latitude and Ω is the earth’s rotation rate), g is
the acceleration due to gravity, and k is the unit vector in
the vertical direction (here and below, all vector quantities
are in bold type). For simplicity, an f-plane is assumed
(f = constant) and the Coriolis terms proportional to the
cosine of the latitude have been neglected as is customary
for geophysical flow analyses off of the equator (e.g.,
McWilliams 2011).

The kinetic energy equation is obtained by taking the
scalar product Equation (1) with u using the identity u ·
∇u = ∇(12u

2) + ω ∧ u, where ω = ∇ ∧ u is the vorticity
vector. This procedure gives:

∂

∂t
(12u

2) + u · ∇(12u
2) = −

1

ρ
u · ∇p− gw − u ·F, (2)

where w = k · u is the vertical component of velocity. Note
that the Coriolis force (−f ∧ u) does not appear in the
energy equation because it is orthogonal to u.

An alternative form of the energy equation is obtained
by removing some hydrostatically-balanced reference
pressure, pref (z), from (1), where dpref/dz = −gρref
defines a reference density, ρref , that is a function of
altitude z. Then, with the substitution p = pref (z) + p′ and
ρ = ρref (z) + ρ′, the first two terms on the right-hand-side
of Equation (1), −(1/ρ)∇p− gk, become −(1/ρ)∇p′ +
bk, where b = −g(ρ− ρref )/ρ is the buoyancy force of an
air parcel per unit mass. Then, Equation (2) becomes

∂

∂t
(12u

2) + u · ∇(12u
2) = −

1

ρ
uh · ∇hp

′ + Pw − u · F,

(3)
where uh is the horizontal velocity vector, ∇h is the
horizontal gradient operator and

P = −
1

ρ

∂p

∂z
− g = −

1

ρ

∂p′

∂z
+ b (4)

is the net vertical perturbation gradient force per unit
mass. Despite the explicit appearance of p′ in the first
term on the right-hand-side, all the terms in Equation
(3) are independent of the reference pressure pref (z),
since, in particular, uh · ∇hpref (z) = 0. For simplicity, we
take pref (z) and ρref (z) to be the ambient pressure and
density, respectively, assuming that these are in hydrostatic
equilibrium. Then p′ vanishes at large distances from the
vortex axis.

We examine now the different forms of Equation (3)
derived by Anthes (1974), Gill (1982), and others beginning
with a slight modification of Gill’s formulation.

2.1. Modified Gill’s formulation

In essence, Gill’s formulation of the kinetic energy equation
is as follows. Using the result that for any scalar field, γ,

ρ
Dγ

Dt
=

∂

∂t
(ργ) +∇ · (ργu), (5)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative (see
Gill 1982, Equation 4.3.6)2, the material form of Equation
(3) times ρ may be written in flux form as

∂

∂t
(12ρu

2) +∇ ·FKE = p′∇h · uh + ρPw

+
∂(p′w)

∂z
− ρu · F, (6)

where
FKE = (p′ + 1

2ρu
2)u, (7)

is the mechanical energy flux density vector (Gill, 1982, cf.
Equation 4.6.4).

The global kinetic energy budget can be obtained by
integrating Equation (6) over a cylindrical volume of space,
V , of radius R and height H centred on the storm and using
the boundary conditions that u = 0 at r = 0, and w = 0 at
z = 0 and z = H . Here, we use a cylindrical coordinate
system (r, λ, z) centred on the vortex, where r is the radius,
λ is the azimuth and z is the height. We denote an integral
of the quantity χ over the volume V by

[χ] =
1

πR2H

R
∫

0

rdr

2π
∫

0

dλ

H
∫

0

χdz

Then (6) becomes

MODIFIED GILL’S FORM

d

dt

[

1
2ρu

2
]

= [p′∇h · uh] + [ρPw]− FKEG −D,

(8)

where

FKEG =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u(p′ + 1
2ρu

2)
]

r=R
dz, (9)

is the flux of mechanical energy through the side boundary
r = R, and for a Newtonian fluid with dynamic viscosity
coefficient µ,

D = [µΦν ], (10)

where, in cylindrical coordinates,

Φν = 2

[

(

∂u

∂r

)2

+

(

1

r

∂v

∂λ
+

u

r

)2

+

(

∂w

∂z

)2
]

+

[

r
∂

∂r

(v

r

)

+
1

r

∂u

∂λ

]2

+

[

1

r

∂w

∂λ
+

∂v

∂z

]2

+

[

∂u

∂z
+

∂w

∂r

]2

−
2

3
(∇ · u)2 (11)

2If the density refers to that of a moist air parcel consisting of dry air, water
vapour and liquid water, the density is conserved only if the liquid water
component is suspended in the parcel. In the presence of precipitation,
there will be a small source or sink of density associated with the flux
divergence of falling precipitation. In what follows, we will ignore the
effects of this source/sink term in the kinetic energy budget.
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is the dissipation function3. Here, v is the tangential wind
component.

Since ∇h · uh is the fractional change in the horizontal
area of an air parcel per unit time, the first term on the
right-hand-side of Equation (8) is the cumulative effect of
the kinetic energy generated locally when an air parcel with
positive perturbation pressure expands in the horizontal
or one with a negative perturbation pressure contracts
in the horizontal. The second term on the right-hand-
side of this equation represents the rate of kinetic energy
production by air rising in the presence of a positive
net vertical perturbation pressure gradient force (P > 0)
and air sinking in the presence of a negative net vertical
perturbation pressure gradient force (P < 0). In Gill’s
original formulation, the net vertical perturbation pressure
gradient force term in Equation (8) is replaced by a
buoyancy force, which, by itself, is a non-unique force,
and the second term on the right-hand-side is replaced by
∇ · u, which is the fractional change in volume of an air
parcel. Note that, in Gill’s formulation, there is no term
corresponding with u∂p/∂r (or equivalently u∂p′/∂r) in
Anthes’ formulation of the problem, which a number of
authors have argued is the key term in generating kinetic
energy.

2.2. Generalized Anthes’ formulation

As noted above, Anthes reasonably supposes that the
vertical velocity makes only a small contribution to the
global kinetic energy and his derivation of the kinetic
energy equation is based on the horizontal momentum
equations only and the neglect of the contribution from
1
2w

2 in the kinetic energy. Nevertheless, Anthes retains the
vertical velocity component in the advection term u · ∇u

in Equation (1) and u · ∇(12u
2) in Equation (2). A slightly

generalized form of Anthes’ equation follows directly from
ρ times Equation (3), which in flux form analogous to (6) is

∂

∂t
(12ρu

2) +∇ · FKEA =

−uh · ∇hp
′ + ρPw − ρu ·F, (12)

where

FKEA = (12ρu
2)u. (13)

Again integrating over the cylinder, Equation (12) becomes

GENERALIZED ANTHES’ FORM

d

dt

[

1
2ρu

2
]

= −[uh · ∇hp′] + [ρPw]− FKEA −D,

(14)

3Equation (8) is, in essence, the kinetic energy equation for the Reynolds
averaged flow in which the quantity µ is a turbulent eddy counterpart.
In this case, we are presuming that a K-theory closure is adequate so
that the Reynolds averaged equations look essentially like the Newtonian
fluid formulation. Further, in the mechanical energy flux through the side
boundary in Equation (9) we have neglected the eddy diffusive radial
flux of kinetic energy. Relative to the advective flux of kinetic energy,
the diffusive flux scales as the inverse Reynolds number of the flow,
which is always small compared to unity outside of the surface layer. This
conclusion is based on recently obtained estimates of the turbulent eddy
diffusivity observed in major hurricanes on the order of 50− 100 m2s−1

(Zhang et al. 2011).

where

FKEA =
1

πR2H

2π
∫

0

dλ

H
∫

0

[

u(12ρu
2)
]

r=R
dz. (15)

Equation (14) is a generalization of Anthes’ formulation to
include the three-dimensional wind vector in the definition
of kinetic energy and the rate of working of the net vertical

perturbation gradient force per unit volume, [ρPw], which
is a non-hydrostatic effect. As in Anthes’ original form,

the pressure-work term, −[uh · ∇hp′], appears explicitly
in the global form of the kinetic energy equation. For an

axisymmetric flow, this term is simply [−u∂p/∂r] and, at
first sight, one might question its prominence as a source
of kinetic energy, since ∂p/∂r is not the only radial force
acting on fluid parcels en route to the storm core. Above
the frictional boundary layer, the radial pressure gradient
is closely balanced by the sum of the centrifugal force and
the radial component of the Coriolis force. Moreover, this
source term does not appear in Gill’s formulation (cf. Eq.

(8)), although it is replaced by the term [p′∇h · uh] and
the boundary flux terms are different. Even so, one should

bear in mind that even in the axisymmetric case, [−u∂p/∂r]
is generating not only a radial contribution to the kinetic
energy, but also an azimuthal contribution through the
action of the generalized Coriolis force (f + v/r)u. The
generation of this azimuthal contribution is implicit in the
kinetic energy equation as the generalized Coriolis force
does no work, but it does convert radial momentum to
tangential momentum.

3. Kinetic energy budget for an idealized simulation

We examine now the generation terms in the two forms
of the kinetic energy equation for the case of an
idealized tropical cyclone simulation. We begin with a brief
description of the numerical model and go on to present the
results.

3.1. The numerical model

The numerical model used for this study is Bryan’s three-
dimensional, nondydrostatic cloud model (CM1), version
16 (Bryan and Fritsch, 2002). The simulations relate to
the prototype problem for tropical cyclone intensification,
which considers the evolution of an initially axisymmetric,
cloud-free, warm-cored, baroclinic vortex in a quiescent
environment on an f -plane. The initial vortex is in thermal
wind balance. A latitude of 20oN and a constant sea surface
temperature of 28oC are assumed. The model configuration
is more or less the same as described in section 2 of
Črnivec et al. (2016). The differences are that, following
the work of Mapes and Zuidema (1996), a more realistic
time scale for Newtonian relaxation to the temperature
field (10 days) is applied here instead of the previous
default value in CM1 (12 h). Further, an open boundary
condition is taken at lateral boundaries instead of rigid
walls and the Dunion moist tropical sounding is used as the
environmental sounding (Dunion 2011).

The initial tangential wind speed has a maximum of
15 m s−1 at the surface at a radius of 100 km. The
tangential wind speed decreases sinusoidally with height,
becoming zero at a height of 20 km. Above this height, up

Copyright c© 2018 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 1–9 (2018)

Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.



4 R. K. Smith, M. T. Montgomery and G. Kilroy

(a)

(b)

(c)

Figure 1. Time series of (a) maximum azimuthally-averaged tangential
wind speed (Vmax). Panel (b) shows the radius Rvmax at which the
maximum tangential wind speed occurs (Vmax). Panel (c) shows the radius
at which gale force winds occurs (Rgales), where Rgales calculated at a

height of 1 km, and corresponds to the radius of 17 m s−1 total winds
outside the eyewall.

to 25 km, the tangential wind is set to zero. The balanced
pressure, density and temperature fields consistent with this
prescribed tangential wind distribution are obtained using
the method described by Smith (2006). The calculations are
carried out for a period of 4 days with data output every 15
min.

3.2. A few details of the simulation

Figure 1 summarizes the vortex evolution in the simulation.
Panel (a) shows time series of the maximum azimuthally-
averaged tangential wind speed, Vmax, and panel (b) shows
the radius Rvmax at which Vmax occurs. Typically, Vmax

is located a few hundred meters above the surface, within
a shallow inflow layer. The evolution is broadly similar to
that described in Kilroy et al. (2016), who used a different

numerical model and a much coarser horizontal resolution
(horizontal grid spacing 5 km compared with 1 km used
here). In brief, after a gestation for about a day during
which deep convection becomes established inside Rvmax,
the vortex undergoes a rapid intensification phase lasting
about 36 h, before reaching a quasi-steady state. Initially
Rvmax is located at a radius of 100 km, but contracts to a
little more than 20 km after about 2 1

4 days. The most rapid
contraction occurs during the rapid intensification phase as
absolute angular momentum surfaces are drawn inwards
quickly within and above the boundary layer.

Figure 1(c) shows the outermost radius of gale-force
winds, Rgales, defined here as the radius of 17 m s−1

azimuthally-averaged tangential winds at a height of 1 km,
which is approximately at the top of the frictional boundary
layer. Shown also is RgalesF , defined as the (outer) radius
at which the total wind speed at any grid point at a height
of 10 m is 17 m s−1. Both quantities serve as a measure of
the vortex size, RgalesF being closest to the quantity used

by forecasters4, but Rgales being a preferred measure from
a theoretical viewpoint (Kilroy et al. 2016). The evolution
of storm size based on RgalesF is similar to that based
on Rgales, although Rgales always exceeds the value of
RgalesF . After 4 days, Rgales exceeds RgalesF by about 80
km.

Figure 2 shows vertical cross sections of the azimuthally-
averaged, 3 h time averaged, radial and tangential velocity
components, the vertical velocity component, and the M -
surfaces during the intensification phase of the vortex. The
time averages are centred on 36 h during the period of rapid
intensification and at 60 h near the end of this period. The
basic features of the flow are qualitatively similar at both
times, but all three velocity components strengthen over
the period, the M -surfaces moving inwards in the lower
troposphere and outwards in the upper troposphere. The
flow structure is similar to that which has been described
in many previous studies (see e.g. the recent review by
Montgomery and Smith 2017a and refs.) with a layer
of strong shallow inflow marking the frictional boundary
layer, a layer of weaker inflow in the lower troposphere,
a region of strong outflow in the upper troposphere and a
layer of enhanced inflow below the outflow. The maximum
tangential wind speed occurs within, but near the top of
the frictional boundary layer5. Much of the ascent occurs
in an annular region on the order of 50-60 km in radius. The
region inside this annulus shows mostly descent.

3.3. Kinetic energy evolution

Figure 3 shows time series of the domain-averaged kinetic

energy per unit mass,
[

1
2ρu

2
]

, for domain radii 300 km and
500 km and a domain height of 20 km. As anticipated by
Anthes (1974), this quantity is dominated by the horizontal

velocity components: in fact, the curves for
[

1
2ρu

2
]

and
[

1
2ρu

2

h

]

essentially overlap. It follows that the contribution
of the vertical velocity to the global kinetic energy is

4Based on the wind speed in a particular sector and not azimuthally
averaged.
5At 60 h, the tangential wind field exhibits a second local maximum in
the eyewall. This is a transient feature that is presumably associated with a
centrifugal wave near the base of the eyewall (e.g. Montgomery and Smith
2017, p550) excited by an elevated pulse of boundary layer outflow shortly
before. This feature is not seen at 48 h or 72 h and its presence doesn’t alter
the findings concerning the kinetic energy budget.
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(a) (b)

(c) (d)

Figure 2. Left panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged tangential velocity component (blue contours) centred
at 36 h and 60 h. Superimposed are contours and shading of the averaged vertical velocity. Contour intervals are as follows. Tangential velocity: blue
contours every 5 m s−1, with a thick black contour highlighting the 17 m s−1 contour. Vertical velocity: thin red contours every 0.05 m s−1 to 0.2 m
s−1, thick red contour interval 0.5 m s−1, thin dashed red contours indicate subsidence at intervals of 0.02 m s−1. Right Panels: Vertical cross sections
of the azimuthally-averaged, 3 hour time averaged radial velocity component together with the averaged vertical velocity centred at the same times.
Contour intervals are as follows. Radial velocity: thick blue contours 4 m s−1, dashed negative, thin blue dashed contours every 0.5 m s−1 down to -3.5
m s−1. Absolute angular momentum: thick black contours every 2× 105 m2 s−1, with the 6× 105 m2 s−1 contour highlighted in yellow.

negligible. Notable features of the curves for both domain
sizes are the slight decrease during the first 12 h on account
of surface friction, followed by a rapid increase as the
vortex intensifies. As time proceeds, the rate of increase
progressively declines.

3.4. Kinetic energy generation: Anthes’ formulation

Figure 4 shows time series of the principal terms in
the generalized Anthes formulation (the right-hand-side of
Equation (14)), excluding only the global dissipation term
since the focus of the paper is on kinetic energy generation.
For both domain radii, 300 km (Fig. 4(a)) and 500 km

(Fig. 4(a)), both the terms [−uh · ∇hp′] and [ρPw] are
positive6, but, perhaps surprisingly, the former term is not
appreciably larger than the latter, even beyond 2 days when
the differences are largest. The boundary flux term FKEA

is virtually zero throughout the calculation. For the larger
domain size (R = 500 km), the temporal behaviour of the
various terms is similar, but, as expected, the magnitudes
of the respective terms are appreciably smaller (Fig. 4(b)),
since the largest contributions to the averages are from well
inside a 300 km radius (note the different scales on the
ordinate in Figs. 4(a) and 4(b)).

The finding that the two terms [−uh · ∇hp′] and [ρPw]
are not appreciably different in magnitude is at first sight
surprising since, as shown in Figure 3, the contribution
of the vertical velocity to the total kinetic energy is

negligible. Moreover, the [ρPw] term does not appear in
Anthes’ original formulation because the formulation was
based on the horizontal momentum equations only. An

6The finite difference form of the vertical perturbation pressure gradient in

calculating the term [ρPw] is detailed in the appendix.

explanation of this result is suggested by an examination
of the radial-height structure of the azimuthally-averaged
generation term before completing the columnar average,

i.e. < −uh · ∇hp
′ >, where the angle brackets denote an

azimuthal average. The structure of this average together

with those of the other generation term, < ρPw >, at 36
h and 60 h, is shown in Figure 5. At both times, the
Anthes generation term < −uh · ∇hp

′ > shows coherent

regions of large kinetic energy generation and of large
kinetic energy destruction. The main region of generation

in panels (a) and (b) is at low levels, below about 2 km,
where the strongest inflow occurs and where the inward

directed radial pressure gradient force is particularly strong
(panels (c) and (d) of Figure 5). There is a second region
of generation in an annular column, mostly on the outer

side of the eyewall updraught below about 9 km at 36 h
and below about 12 km at 60 h. The generation terms in

panels (a) and (b) are similar in structure and magnitude to
that shown by Kurihara (1975, Figure 42, upper right) for a
lower resolution axisymmetric simuulation.

Since the radial pressure gradient is positive at all heights
[panels (c) and (d) of Figure 5], these generation regions

must be ones in which there is generally inflow7. For
the same reason, where there is outflow, there is kinetic

energy removal as seen in the two principal coherent
regions in panels (a) and (b) where < −uh · ∇hp

′ ><

0. It follows that the computed value of [−uh · ∇hp′]
is the remainder resulting from the cancellation of two
comparatively large contributions from < uh · ∇hp

′ > of

opposite sign, namely < −uh · ∇hp
′ >+ and < −uh ·

∇hp
′ >−, the former being the sum of all positive values of

−uh · ∇hp
′ and the latter < −uh · ∇hp

′ >− to be the sum

7Note that eddy effects are included in all generation terms.
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Figure 3. Time series of the left-hand-side of Equation 14,
[

1

2
ρu2

]

(curves labelled uvw) compared to
[

1

2
ρu2

h

]

(curves labelled uv) for
cylinders of 300 km and 500 km. The curves for each cylinder size lie
essentially on top of each other so that only a single curve is evident. The
curves for the 500 km domain are labelled with a ‘5’.

of all negative values. This large cancellation is evident in
the time series shown in Figure 4.

In summary, a substantial fraction of the kinetic energy

that is generated is removed in regions where there is

outflow and the residual is relatively small, comparable,

indeed, with the kinetic energy generated by the rate-of-

working of the net vertical perturbation pressure gradient

force (buoyancy plus perturbation pressure gradient),

principally in the region of diabatically-forced ascent. The

structure of the net vertical perturbation pressure gradient

force at 36 h and 60 h is shown in panels (e) and (f) of Figure

5. As expected, this force is concentrated in an annular
region overlapping the region of diabatic heating.

3.5. Kinetic energy generation (Gill’s formulation)

Figure 6 shows time series of the principal terms in the

modified Gill formulation (the right-hand-side of Equation

(8)), excluding again the global dissipation term. In this

formulation, the term [p′∇h · uh] is positive with mean

amplitude and fluctuations about this mean increasing with

time during the 4 day calculation [Fig. 6(b)]. For the

first day, the term is a little less than the [ρPw] term,

but thereafter becomes progressively larger. The increasing

energy source represented by the sum of the two foregoing

terms is opposed, in part, by the net outward flux of

mechanical energy through the radial boundary, FKEG.

Panels (c) and (d) of Figure 6 show the structure of

the term < p′∇h · uh >, again 36 h and 60 h. The radial

and vertical integral of this term form the cylindrical

average [p′∇h · uh] in the modified Gill’s formulation of

the energy equation. The qualitative radius-height structure

of < p′∇h · uh > at the two times shown is less easy to

infer from the solutions in Figure 2. Moreover, as shown in

Figure 6, there is significant cancellation between the term

[p′∇h · uh] and the boundary flux term in Gill’s formulation

[Equation (8)]. For this reason, the Anthes’ formulation of

the energy equation would seem to be preferable to Gill’s

formulation, even though both formulations are correct and

give the same tendency of kinetic energy over the control
volume of integration (see next subsection).

3.6. Total kinetic energy generation

A check on the foregoing calculations is provided by
calculating the total tendency of kinetic energy generation,
which is the sum of all the terms on the right-hand-side of
Equations (8) or (14). This sum should be the same for each
formulation. That this is the case is verified in Figure 7,
which shows the sum for each domain size. As expected,
the curves for the two formulations are coincident.

4. Discussion

Anthes’ statement noted in the Introduction that “the
important source of kinetic energy production in the
hurricane is the radial flow toward lower pressure in the
inflow layer, represented by −u∂p/∂r” may seem at first
sight problematic because, above the boundary layer, the
radial pressure gradient is very closely in balance with
sum of centrifugal and Coriolis forces. Thus the energy
source associated with −u∂p/∂r might appear, at least at
first sight, to be a gross overestimate. However, the kinetic
energy equation doesn’t recognize the balance constraint
and, in this equation, the radial pressure gradient acts
to generate not only kinetic energy of radial motion,
but also that of tangential motion through the action of
the generalized Coriolis force (f + v/r)u, a term that
appears in the tangential momentum equation in cylindrical
coordinates. This is despite the fact that the generalized
Coriolis force does not appear explicitly in the kinetic
energy equation.

As noted also in the Introduction, Anthes recognized
that much of the inflow into the storm is “ ... a result of
surface friction, which reduces the tangential wind speed
and thereby destroys the gradient balance, so that the inward
pressure gradient force exceeds the Coriolis and centripetal8

forces” and he pointed out that “In the warm core low the
maximum pressure gradient (−∂p/∂r < 0 [sign corrected:
our insertion]) occurs at the lowest level, at which the inflow
(u < 0) is maximum. In the outflow layer, where the radial
flow is reversed, the pressure gradient is much weaker. The
result is a net production of kinetic energy, dominated by
the contribution from the inflow region”. While this view is
broadly supported by the calculations presented herein, the
calculations provide a sharper view of the net production
of kinetic energy indicating a region of significant kinetic
energy generation accompanying inflow throughout the
lower troposphere above the boundary layer as well as
significant regions where kinetic energy is consumed as
air flows outwards, against the radial pressure gradient,
above the boundary layer. Indeed, the generation above
the boundary layer is a manifestation of spin up by the
classical mechanism articulated by Ooyama (1969), while
the generation within the boundary layer, highlighted by
Anthes, is a manifestation of the nonlinear boundary layer
spin up mechanism articulated by Smith and Vogl (2008),
Smith et al. (2009), Smith and Montgomery (2016) and
Montgomery and Smith (2017b).

Anthes argues that the boundary layer “ ... must be
responsible for a net gain of kinetic energy” even though
“a substantial dissipation of kinetic energy in the hurricane
occurs in the boundary layer through turbulent diffusion and
ultimate loss of energy to the sea surface”. As a result, he

8Presumably, Anthes means the centrifugal force.
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(a) (b)

Figure 4. Time series of the kinetic energy tendency terms on the right-hand-side of Equation (14), the Anthes’ formulation, averaged over a cylinder of

size (a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W m−3. The dissipation term is not shown. A1 stands for [−uh · ∇hp′], FK for FKEA

and PW for [ρPw]. A1+ and A1- stand for the contributions to A1 from regions where the argument −uh · ∇hp
′ is positive and negative, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Radius-height cross sections of azimuthally-averaged quantities in Equation (14), before performing the columnar average: < −uh · ∇hp
′ >

(panels (a), (b)); and < ρPw > (panels (e), (f)), at 36 h (left panels) and 60 h (right panels). Panels (c) and (d) show similar cross sections of < ∂p′/∂r >
at these times. Contour intervals are as follows. Panels (a), (b), (e) and (f): thick contours 5× 10−2 W m−3: thin contours 1× 10−2 W m−3. Solid red
contours positive, dashed blue contours negative. Panels (c) and (d): thin contours 0.2× 10−2 Pa m−1 to 0.8× 10−2 Pa m−1; medium thick contours
1.0× 10−2 Pa m−1 to 5.0× 10−2 Pa m−1; thick contours every 5.0× 10−2 Pa m−1. Numbers indicated on the side bar should be multiplied by
10−2.
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(a) (b)

(c) (d)

Figure 6. Time series of the kinetic energy tendency terms: [p′∇h · uh] (denoted by G1); [ρPw] (denoted PW) and FKEG (denoted FK) in the
modified Gill formulation [Equation (8) averaged over a cylinder of size (a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W m−3. Panels
(c) and (d) show the azimuthally averaged terms < p′∇h · uh > in Equation (8) at 36 h and 60 h, respectively. Contour intervals are: thick contours
5× 10−2 W m−3: thin contours 1× 10−2 W m−3. Solid red contours positive, dashed blue contours negative. Numbers indicated on the side bar
should be multiplied by 10−2.

Figure 7. Sum of the terms for Gill’s and Anthes’ formulation excluding
the dissipation term for cylinders of radius R = 300 km and 500 km.
Values on the ordinate have been multiplied by 103 for plotting purposes.
The two curves for each value of R lie essentially on top of each other.

is led to the paradox that “surface friction is responsible
for a net increase in kinetic energy and without friction the

hurricane could not exist.” The resolution of this paradox
would appear to be Anthes’ de-emphasis of the role of

the classical mechanism for spin up in the kinetic energy
budget.

The results of our study, especially the noted cancellation

of relatively large generation and consumption contribu-

tions to the term [−uh · ∇hp′] points to limitations in the
utility of a global kinetic energy budget in revealing the

underlying dynamics of tropical cyclone intensification. An
alternative approach would be to examine the energetics of

individual air parcels as they move around some hypothet-
ical circuit (see Emanuel (2004) and references), but this
approach relies on assumptions about the circuits traversed,
circuits that may or may not be realizable in reality.

5. Conclusions

We have re-examined the traditional theory for kinetic
energy generation in a tropical cyclone used by Palmén
and Jordan (1955), Palmén and Riehl (1957), Frank (1977),
Hogsett and Zhang (2009) and succinctly summarized in the
review article by Anthes (1974). We have compared this
with an alternative interpretation of global kinetic energy
generation in geophysical flows inspired by Gill (1982),
noting that such interpretations are non-unique.

We have shown that the net rate of production of kinetic
energy is a comparatively small difference between the
generation in regions of inflow and the magnitude of the
consumption in regions of outflow, so much so, that this
difference is comparable in magnitude with the rate of
generation by the net vertical perturbation pressure gradient
force. The latter effect was not contained in Anthes’ original
formulation, which was based only on the horizontal
momentum equations.

We pointed out that the kinetic energy generation term in
Anthes’ formulation involving the radial pressure gradient
does not appear in Gill’s formulation of the kinetic energy
equation or our modification thereof. It is replaced by a
term comprising the global integral of the rate of working

by perturbation pressure ([p′∇h · uh]) as the flow expands
in the horizontal. However, this generation term is largely

Copyright c© 2018 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 1–9 (2018)
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compensated in the modified Gill formulation by the
boundary flux of mechanical energy (FKEG). The fact
that the boundary flux of kinetic energy in the Anthes
formulation (FKEA) is typically negligible, as well as
the difficulty in anticipating the structure of the term

[p′∇h · uh] in a tropical cyclone are factors weighing in
favour of using Anthes’ formulation when applied to the
generation of kinetic energy in a tropical cyclone. However,
in the light of the large cancellation of positive and negative
values in the radial pressure-work term, the contribution
from the rate of working of the net vertical force is non-
negligible in comparison and should be included in any
global kinetic energy budget.

While global energetics provide a constraint on flow
evolution, we have shown in the context of the kinetic
energy equation that they conceal important aspects of
energy generation and consumption. This finding highlights
the limitations of a global kinetic energy budget in revealing
the underlying dynamics of tropical cyclones.
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7. Appendix: Calculation of the net vertical force, P

The net vertical force per unit mass, P , defined in Equation
(4) and used to construct Figures 5(e) and 5(f) was
first calculated on the stretched model grid at the levels
where thermodynamic quantities are defined. The vertical
perturbation pressure gradient was determined by fitting a
quadratic function to three successive levels zi−1, zi and
zi+1 at which the perturbation pressure has values p′i−1, p′i
and p′i+1, respectively. Then

(

∂p′

∂z

)

i

=
(p′i+1 − p′i)dz

2
i − (p′i−1 − p′i)dz

2
i+1

dzi+1dzi(zi+1 − zi−1)
(16)

where dzi = zi − zi−1.
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Many previous diagnoses of the global kinetic energy for a tropical cyclone have given 

prominence to a global integral of a pressure-work term in the generation of kinetic energy. 
However, in his erudite textbook of atmospheric and oceanic dynamics, Gill (1982) derives a 
form of the kinetic energy equation in which there is no such explicit source term. In this paper 
we revisit the interpretations of the generation of kinetic energy given previously in the light of 
Gill’s analysis and compare the various interpretations, which are non-unique. 

Further, even though global energetics provide a constraint on the flow evolution, in the 
context of the kinetic energy equation, they conceal important aspects of energy generation 
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1  Introduction 
 
In a classical review paper, Anthes (1974, section DI) summarized the global energetics 

of tropical cyclones, based in part on the work of Palmén and Jordan (1955) and Palmén and 
Riehl (1957). In this review he argues that the kinetic energy is dominated by the horizontal 
velocity components and he derives an expression for the rate-of-generation of kinetic energy, 
showing that “The important source of kinetic energy production in the hurricane is the radial 
flow toward lower pressure in the inflow layer, represented by ." (Here  is the radial 
velocity component,  is the radius and  is the pressure). In a similar vein, Palmén and Riehl 
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op. cit. note that "the generation depends on the vertical correlation between radial flow 
component and pressure gradient which, for production of kinetic energy, must be positive, i.e., 
the strongest inflow must occur at the strongest inward directed pressure gradient. They 
conclude that “kinetic energy production within the cyclone can take place only if the cyclone is 
of the warm core type." Anthes goes on to argue that “This inflow is a result of surface friction, 
which reduces the tangential wind speed and thereby destroys the gradient balance, so that the 
inward pressure gradient force exceeds the Coriolis and centripetal forces. In the warm core 
low the maximum pressure gradient ( )1 occurs just above the surface layer, at which 
the inflow ( ) is maximum in magnitude. In the outflow layer, where the radial flow is 
reversed, the pressure gradient is much weaker. The result is a net production of kinetic energy, 
dominated by the contribution from the inflow region." 

The foregoing interpretations seem at odds with the kinetic energy equation in flux form 
presented by Gill (1982) in which the term  does not appear. Nevertheless, in the 
context of tropical cyclones, subsequent work has built on the formulation by Palmén and Riehl 
as reviewed by Anthes (e.g. Kurihara 1975, Tuleya and Kurihara 1975, Frank 1977, DiMego and 
Bosart 1982, Hogsett and Zhang 2009, Wang   et al. 2016). The generation of kinetic energy in 
the context of the global climate is discussed by Peixoto and Oort (1992, section 13.2). 

The purpose of this paper is to reconcile the different interpretations of kinetic energy 
generation and to calculate the various terms in the kinetic energy budget from an idealized 
high-resolution numerical simulation of a tropical cyclone. 

 

2  Kinetic energy equations 
 
In its most basic form, the momentum equation may be written as  

 (1) 

 where  is the three dimensional velocity vector,  is the pressure,  is the density,  is the 
frictional force opposing the motion, ,  is the Coriolis parameter ( , where  is 
latitude and  is the earth’s rotation rate), g is the acceleration due to gravity, and  is the unit 
vector in the vertical direction (here and below, all vector quantities are in bold type). For 
simplicity, an f-plane is assumed (f = constant) and the Coriolis terms proportional to the cosine 
of the latitude have been neglected as is customary for geophysical flow analyses off of the 
equator (e.g., McWilliams 2011). 

The kinetic energy equation is obtained by taking the scalar product Equation (1) with  
using the identity , where  is the vorticity vector. This 
procedure gives:  

 (2) 

 where  is the vertical component of velocity. Note that the Coriolis force ( ) 
does not appear in the energy equation because it is orthogonal to . 

An alternative form of the energy equation is obtained by removing some 
hydrostatically-balanced reference pressure, , from (1), where  

                                                       
1 Presumably Anthes meant . 

This article is protected by copyright. All rights reserved.



defines a reference density, , that is a function of altitude . Then, with the substitution 
 and , the first two terms on the right-hand-side of Equation 

(1), , become , where  is the buoyancy 
force of an air parcel per unit mass. Then, Equation (2) becomes  

 (3) 

 where  is the horizontal velocity vector,  is the horizontal gradient operator and  
 (4) 

 is the net vertical perturbation gradient force per unit mass. Despite the explicit appearance of 
 in the first term on the right-hand-side, all the terms in Equation (3) are independent of the 

reference pressure , since, in particular, . For simplicity, we take 
 and  to be the ambient pressure and density, respectively, assuming that these 

are in hydrostatic equilibrium. Then  vanishes at large distances from the vortex axis. 
We examine now the different forms of Equation (3) derived by Anthes (1974), Gill 

(1982), and others beginning with a slight modification of Gill’s formulation. 
 
2.1  Modified Gill’s formulation 
 
In essence, Gill’s formulation of the kinetic energy equation is as follows. Using the 

result that for any scalar field, ,  
 (5) 

 where  is the material derivative (see Gill 1982, Equation 4.3.6)2, the 
material form of Equation (3) times  may be written in flux form as  

 
 (6) 

 where  
 (7) 

 is the mechanical energy flux density vector (Gill, 1982, cf. Equation 4.6.4). 
The global kinetic energy budget can be obtained by integrating Equation (6) over a 

cylindrical volume of space, , of radius  and height  centred on the storm and using the 
boundary conditions that  at , and  at  and . Here, we use a 
cylindrical coordinate system  centred on the vortex, where  is the radius,  is the 
azimuth and  is the height. We denote an integral of the quantity  over the volume  by  

 
Then (6) becomes   MODIFIED GILL’S FORM  

                                                       
2 If the density refers to that of a moist air parcel consisting of dry air, water vapour and liquid water, the density is conserved only if the liquid 
water component is suspended in the parcel. In the presence of precipitation, there will be a small source or sink of density associated with the 
flux divergence of falling precipitation. In what follows, we will ignore the effects of this source/sink term in the kinetic energy budget. 
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 (8) 
   where  

 (9) 

 is the flux of mechanical energy through the side boundary , and for a Newtonian fluid 
with dynamic viscosity coefficient ,  

 (10) 
 where, in cylindrical coordinates,  

 

 

 (11) 
 is the dissipation function3. Here,  is the tangential wind component. 

Since  is the fractional change in the horizontal area of an air parcel per unit 
time, the first term on the right-hand-side of Equation (8) is the cumulative effect of the kinetic 
energy generated locally when an air parcel with positive perturbation pressure expands in the 
horizontal or one with a negative perturbation pressure contracts in the horizontal. The second 
term on the right-hand-side of this equation represents the rate of kinetic energy production by 
air rising in the presence of a positive net vertical perturbation pressure gradient force ( ) 
and air sinking in the presence of a negative net vertical perturbation pressure gradient force 
( ). In Gill’s original formulation, the net vertical perturbation pressure gradient force term 
in Equation (8) is replaced by a buoyancy force, which, by itself, is a non-unique force, and the 
second term on the right-hand-side is replaced by , which is the fractional change in 
volume of an air parcel. Note that, in Gill’s formulation, there is no term corresponding with 

 (or equivalently ) in Anthes’ formulation of the problem, which a number of 
authors have argued is the key term in generating kinetic energy. 

 
2.2  Generalized Anthes’ formulation 
 
As noted above, Anthes reasonably supposes that the vertical velocity makes only a 

small contribution to the global kinetic energy and his derivation of the kinetic energy equation 
is based on the horizontal momentum equations only and the neglect of the contribution from 

 in the kinetic energy. Nevertheless, Anthes retains the vertical velocity component in the 

advection term  in Equation (1) and  in Equation (2). A slightly generalized 
form of Anthes’ equation follows directly from  times Equation (3), which in flux form 

                                                       
3 Equation (8) is, in essence, the kinetic energy equation for the Reynolds averaged flow in which the quantity  is a turbulent eddy counterpart. 
In this case, we are presuming that a K-theory closure is adequate so that the Reynolds averaged equations look essentially like the Newtonian 
fluid formulation. Further, in the mechanical energy flux through the side boundary in Equation (9) we have neglected the eddy diffusive radial 
flux of kinetic energy. Relative to the advective flux of kinetic energy, the diffusive flux scales as the inverse Reynolds number of the flow, which 
is always small compared to unity outside of the surface layer. This conclusion is based on recently obtained estimates of the turbulent eddy 

diffusivity observed in major hurricanes on the order of  m s  (Zhang et al. 2011). 
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analogous to (6) is  

 
 (12) 

 where  
 (13) 

 Again integrating over the cylinder, Equation (12) becomes   GENERALIZED ANTHES’ FORM  

 (14) 
   where  

 (15) 

 Equation (14) is a generalization of Anthes’ formulation to include the three-dimensional wind 
vector in the definition of kinetic energy and the rate of working of the net vertical perturbation 
gradient force per unit volume, , which is a non-hydrostatic effect. As in Anthes’ original 
form, the pressure-work term, , appears explicitly in the global form of the kinetic 
energy equation. For an axisymmetric flow, this term is simply  and, at first 
sight, one might question its prominence as a source of kinetic energy, since  is not 
the only radial force acting on fluid parcels en route to the storm core. Above the frictional 
boundary layer, the radial pressure gradient is closely balanced by the sum of the centrifugal 
force and the radial component of the Coriolis force. Moreover, this source term does not 
appear in Gill’s formulation (cf. Eq. (8)), although it is replaced by the term  and the 
boundary flux terms are different. Even so, one should bear in mind that even in the 
axisymmetric case,  is generating not only a radial contribution to the kinetic 
energy, but also an azimuthal contribution through the action of the generalized Coriolis force 

. The generation of this azimuthal contribution is implicit in the kinetic energy 
equation as the generalized Coriolis force does no work, but it does convert radial momentum 
to tangential momentum. 

 

3  Kinetic energy budget for an idealized simulation 
 
We examine now the generation terms in the two forms of the kinetic energy equation 

for the case of an idealized tropical cyclone simulation. We begin with a brief description of the 
numerical model and go on to present the results. 

 
3.1  The numerical model 
 
The numerical model used for this study is Bryan’s three-dimensional, nondydrostatic 

cloud model (CM1), version 16 (Bryan and Fritsch, 2002). The simulations relate to the 
prototype problem for tropical cyclone intensification, which considers the evolution of an 
initially axisymmetric, cloud-free, warm-cored, baroclinic vortex in a quiescent environment on 
an -plane. The initial vortex is in thermal wind balance. A latitude of 20 N and a constant sea 
surface temperature of 28 C are assumed. The model configuration is more or less the same as 
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described in section 2 of rnivec   et al. (2016). The differences are that, following the work of 
Mapes and Zuidema (1996), a more realistic time scale for Newtonian relaxation to the 
temperature field (10 days) is applied here instead of the previous default value in CM1 (12 h). 
Further, an open boundary condition is taken at lateral boundaries instead of rigid walls and the 
Dunion moist tropical sounding is used as the environmental sounding (Dunion 2011). 

The initial tangential wind speed has a maximum of 15 m s  at the surface at a radius 
of 100 km. The tangential wind speed decreases sinusoidally with height, becoming zero at a 
height of 20 km. Above this height, up to 25 km, the tangential wind is set to zero. The balanced 
pressure, density and temperature fields consistent with this prescribed tangential wind 
distribution are obtained using the method described by Smith (2006). The calculations are 
carried out for a period of 4 days with data output every 15 min. 

 
  (a)  
(b)  
 (c)   

Figure  1: Time series of (a) maximum azimuthally-averaged tangential wind speed ( ). Panel 
(b) shows the radius  at which the maximum tangential wind speed occurs ( ). Panel 

(c) shows the radius at which gale force winds occurs ( ), where  calculated at a 
height of 1 km, and corresponds to the radius of 17 m s  total winds outside the eyewall. 

 
 
3.2  A few details of the simulation 
 
Figure 1 summarizes the vortex evolution in the simulation. Panel (a) shows time series 

of the maximum azimuthally-averaged tangential wind speed, , and panel (b) shows the 
radius  at which  occurs. Typically,  is located a few hundred meters above the 
surface, within a shallow inflow layer. The evolution is broadly similar to that described in Kilroy   
et al. (2016), who used a different numerical model and a much coarser horizontal resolution 
(horizontal grid spacing 5 km compared with 1 km used here). In brief, after a gestation for 
about a day during which deep convection becomes established inside , the vortex 
undergoes a rapid intensification phase lasting about 36 h, before reaching a quasi-steady state. 
Initially  is located at a radius of 100 km, but contracts to a little more than 20 km after 
about 2  days. The most rapid contraction occurs during the rapid intensification phase as 
absolute angular momentum surfaces are drawn inwards quickly within and above the 
boundary layer. 

Figure 1(c) shows the outermost radius of gale-force winds, , defined here as the 
radius of 17 m s  azimuthally-averaged tangential winds at a height of 1 km, which is 
approximately at the top of the frictional boundary layer. Shown also is , defined as the 
(outer) radius at which the total wind speed at any grid point at a height of 10 m is 17 m s . 
Both quantities serve as a measure of the vortex size,  being closest to the quantity used 
by forecasters4, but  being a preferred measure from a theoretical viewpoint (Kilroy   et 

                                                       
4 Based on the wind speed in a particular sector and not azimuthally averaged. 
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al. 2016). The evolution of storm size based on  is similar to that based on , 
although  always exceeds the value of . After 4 days,  exceeds  by 
about 80 km. 

Figure 3.2 shows vertical cross sections of the azimuthally-averaged, 3 h time averaged, 
radial and tangential velocity components, the vertical velocity component, and the -surfaces 
during the intensification phase of the vortex. The time averages are centred on 36 h during the 
period of rapid intensification and at 60 h near the end of this period. The basic features of the 
flow are qualitatively similar at both times, but all three velocity components strengthen over 
the period, the -surfaces moving inwards in the lower troposphere and outwards in the upper 
troposphere. The flow structure is similar to that which has been described in many previous 
studies (see e.g. the recent review by Montgomery and Smith 2017a and refs.) with a layer of 
strong shallow inflow marking the frictional boundary layer, a layer of weaker inflow in the 
lower troposphere, a region of strong outflow in the upper troposphere and a layer of 
enhanced inflow below the outflow. The maximum tangential wind speed occurs within, but 
near the top of the frictional boundary layer5. Much of the ascent occurs in an annular region 
on the order of 50-60 km in radius. The region inside this annulus shows mostly descent. 

   (a) (b) 
 (c) (d) 
   

Left panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged 
tangential velocity component (blue contours) centred at 36 h and 60 h. Superimposed are 

contours and shading of the averaged vertical velocity. Contour intervals are as follows. 
Tangential velocity: blue contours every 5 m s , with a thick black contour highlighting the 17 

m s  contour. Vertical velocity: thin red contours every 0.05 m s  to 0.2 m s , thick red 
contour interval 0.5 m s , thin dashed red contours indicate subsidence at intervals of 0.02 m 

s . Right Panels: Vertical cross sections of the azimuthally-averaged, 3 hour time averaged 
radial velocity component together with the averaged vertical velocity centred at the same 
times. Contour intervals are as follows. Radial velocity: thick blue contours 4 m s , dashed 
negative, thin blue dashed contours every 0.5 m s  down to -3.5 m s . Absolute angular 
momentum: thick black contours every  m  s , with the  m  s  contour 

highlighted in yellow. 
   
 
3.3  Kinetic energy evolution 
 
Figure 2 shows time series of the domain-averaged kinetic energy per unit mass, 

, for domain radii 300 km and 500 km and a domain height of 20 km. As anticipated by 
Anthes (1974), this quantity is dominated by the horizontal velocity components: in fact, the 

curves for  and  essentially overlap. It follows that the contribution of the vertical 

                                                       
5 At 60 h, the tangential wind field exhibits a second local maximum in the eyewall. This is a transient feature that is presumably associated with 
a centrifugal wave near the base of the eyewall (e.g. Montgomery and Smith 2017, p550) excited by an elevated pulse of boundary layer 
outflow shortly before. This feature is not seen at 48 h or 72 h and its presence doesn’t alter the findings concerning the kinetic energy budget. 
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velocity to the global kinetic energy is negligible. Notable features of the curves for both 
domain sizes are the slight decrease during the first 12 h on account of surface friction, 
followed by a rapid increase as the vortex intensifies. As time proceeds, the rate of increase 
progressively declines. 

 
3.4  Kinetic energy generation: Anthes’ formulation 
 
Figure 3 shows time series of the principal terms in the generalized Anthes formulation 

(the right-hand-side of Equation (14)), excluding only the global dissipation term since the focus 
of the paper is on kinetic energy generation. For both domain radii, 300 km (Fig. 4(a)) and 500 
km (Fig. 4(a)), both the terms  and  are positive, but, perhaps surprisingly, 
the former term is not appreciably larger than the latter, even beyond 2 days when the 
differences are largest. The boundary flux term  is virtually zero throughout the 
calculation. For the larger domain size (R = 500 km), the temporal behaviour of the various 
terms is similar, but, as expected, the magnitudes of the respective terms are appreciably 
smaller (Fig. 4(b)), since the largest contributions to the averages are from well inside a 300 km 
radius (note the different scales on the ordinate in Figs. 4(a) and 4(b)). 

The finding that the two terms  and  are not appreciably different in 
magnitude is at first sight surprising since, as shown in Figure 2, the contribution of the vertical 
velocity to the total kinetic energy is negligible. Moreover, the  term does not appear in 
Anthes’ original formulation because the formulation was based on the horizontal momentum 
equations only. An explanation of this result is suggested by an examination of the radial-height 
structure of the azimuthally-averaged generation term before completing the columnar 
average, i.e. , where the angle brackets denote an azimuthal average. The 
structure of this average together with those of the other generation term, , at 36 h 
and 60 h, is shown in Figure 4. At both times, the Anthes generation term  
shows coherent regions of large kinetic energy generation and of large kinetic energy 
destruction. The main region of generation in panels (a) and (b) is at low levels, below about 2 
km, where the strongest inflow occurs and where the inward directed radial pressure gradient 
force is particularly strong (panels (c) and (d) of Figure 4). There is a second region of 
generation in an annular column, mostly on the outer side of the eyewall updraught below 
about 9 km at 36 h and below about 12 km at 60 h. The generation terms in panels (a) and (b) 
are similar in structure and magnitude to that shown by Kurihara (1975, Figure 42, upper right) 
for a lower resolution axisymmetric simuulation. 

 
   

Figure  2: Time series of the left-hand-side of Equation 14,  (curves labelled uvw) 

compared to  (curves labelled uv) for cylinders of 300 km and 500 km. The curves for 
each cylinder size lie essentially on top of each other so that only a single curve is evident. The 

curves for the 500 km domain are labelled with a ‘5’. 
   
  (a)  (b)    
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Figure  3: Time series of the kinetic energy tendency terms on the right-hand-side of Equation 
(14), the Anthes’ formulation, averaged over a cylinder of size (a) 300 km and (b) 500 km. Units 

on the ordinate are  W m . The dissipation term is not shown. A1 stands for 
, FK for  and PW for . A1+ and A1- stand for the contributions to A1 

from regions where the argument  is positive and negative, respectively. 
  
  (a)  (b)  
 (c)  (d)  
 (e)  (f)  
   

Figure  4: Radius-height cross sections of azimuthally-averaged quantities in Equation (14), 
before performing the columnar average:  (panels (a), (b)); and  

(panels (e), (f)), at 36 h (left panels) and 60 h (right panels). Panels (c) and (d) show similar cross 
sections of  at these times. Contour intervals are as follows. Panels (a), (b), (e) and 

(f): thick contours  W m : thin contours  W m . Solid red contours 
positive, dashed blue contours negative. Panels (c) and (d): thin contours  Pa m  to 

 Pa m ; medium thick contours  Pa m  to  Pa m ; thick 
contours every  Pa m . Numbers indicated on the side bar should be multiplied by 

. 
 
  (a)   (b)  
  (c)  (d)  
  

Figure  5: Time series of the kinetic energy tendency terms:  (denoted by G1);  
(denoted PW) and  (denoted FK) in the modified Gill formulation [Equation (8) averaged 

over a cylinder of size (a) 300 km and (b) 500 km. Units on the ordinate are  W m . 
Panels (c) and (d) show the azimuthally averaged terms  in Equation (8) at 36 h 
and 60 h, respectively. Contour intervals are: thick contours  W m : thin contours 

 W m . Solid red contours positive, dashed blue contours negative. Numbers 
indicated on the side bar should be multiplied by . 

  
Since the radial pressure gradient is positive at all heights [panels (c) and (d) of Figure 4], 

these generation regions must be ones in which there is generally inflow6. For the same reason, 
where there is outflow, there is kinetic energy removal as seen in the two principal coherent 
regions in panels (a) and (b) where . It follows that the computed value of 

 is the remainder resulting from the cancellation of two comparatively large 
contributions from  of opposite sign, namely  and 

, the former being the sum of all positive values of  and the latter 
 to be the sum of all negative values. This large cancellation is evident in the 

time series shown in Figure 3. 
In summary, a substantial fraction of the kinetic energy that is generated is removed in 

regions where there is outflow and the residual is relatively small, comparable, indeed, with the 
                                                       
6 Note that eddy effects are included in all generation terms. 
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kinetic energy generated by the rate-of-working of the net vertical perturbation pressure 
gradient force (buoyancy plus perturbation pressure gradient), principally in the region of 
diabatically-forced ascent. The structure of the net vertical perturbation pressure gradient force 
at 36 h and 60 h is shown in panels (e) and (f) of Figure 4. As expected, this force is 
concentrated in an annular region overlapping the region of diabatic heating. 

 
3.5  Kinetic energy generation (Gill’s formulation) 
 
Figure 5 shows time series of the principal terms in the modified Gill formulation (the 

right-hand-side of Equation (8)), excluding again the global dissipation term. In this formulation, 
the term  is positive with mean amplitude and fluctuations about this mean 
increasing with time during the 4 day calculation [Fig. 5(b)]. For the first day, the term is a little 
less than the  term, but thereafter becomes progressively larger. The increasing energy 
source represented by the sum of the two foregoing terms is opposed, in part, by the net 
outward flux of mechanical energy through the radial boundary, . 

Panels (c) and (d) of Figure 5 show the structure of the term , again 36 h 
and 60 h. The radial and vertical integral of this term form the cylindrical average  in 
the modified Gill’s formulation of the energy equation. The qualitative radius-height structure 
of  at the two times shown is less easy to infer from the solutions in Figure 3.2. 
Moreover, as shown in Figure 5, there is significant cancellation between the term  
and the boundary flux term in Gill’s formulation [Equation (8)]. For this reason, the Anthes’ 
formulation of the energy equation would seem to be preferable to Gill’s formulation, even 
though both formulations are correct and give the same tendency of kinetic energy over the 
control volume of integration (see next subsection). 

 
   

Figure  6: Sum of the terms for Gill’s and Anthes’ formulation excluding the dissipation term for 
cylinders of radius  300 km and 500 km. Values on the ordinate have been multiplied by 

 for plotting purposes. The two curves for each value of  lie essentially on top of each 
other. 

   
 
3.6  Total kinetic energy generation 
 
A check on the foregoing calculations is provided by calculating the total tendency of 

kinetic energy generation, which is the sum of all the terms on the right-hand-side of Equations 
(8) or (14). This sum should be the same for each formulation. That this is the case is verified in 
Figure 6, which shows the sum for each domain size. As expected, the curves for the two 
formulations are coincident. 

 

4  Discussion 
 
Anthes’ statement noted in the Introduction that “the important source of kinetic 
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energy production in the hurricane is the radial flow toward lower pressure in the inflow layer, 
represented by " may seem at first sight problematic because, above the boundary 
layer, the radial pressure gradient is very closely in balance with sum of centrifugal and Coriolis 
forces. Thus the energy source associated with  might appear, at least at first sight, 
to be a gross overestimate. However, the kinetic energy equation doesn’t recognize the balance 
constraint and, in this equation, the radial pressure gradient acts to generate not only kinetic 
energy of radial motion, but also that of tangential motion through the action of the 
generalized Coriolis force , a term that appears in the tangential momentum 
equation in cylindrical coordinates. This is despite the fact that the generalized Coriolis force 
does not appear explicitly in the kinetic energy equation. 

As noted also in the Introduction, Anthes recognized that much of the inflow into the 
storm is “ ... a result of surface friction, which reduces the tangential wind speed and thereby 
destroys the gradient balance, so that the inward pressure gradient force exceeds the Coriolis 
and centripetal7 forces" and he pointed out that “In the warm core low the maximum pressure 
gradient (  [sign corrected: our insertion]) occurs at the lowest level, at which the 
inflow ( ) is maximum. In the outflow layer, where the radial flow is reversed, the pressure 
gradient is much weaker. The result is a net production of kinetic energy, dominated by the 
contribution from the inflow region". While this view is broadly supported by the calculations 
presented herein, the calculations provide a sharper view of the net production of kinetic 
energy indicating a region of significant kinetic energy generation accompanying inflow 
throughout the lower troposphere above the boundary layer as well as significant regions 
where kinetic energy is consumed as air flows outwards, against the radial pressure gradient, 
above the boundary layer. Indeed, the generation above the boundary layer is a manifestation 
of spin up by the classical mechanism articulated by Ooyama (1969), while the generation 
within the boundary layer, highlighted by Anthes, is a manifestation of the nonlinear boundary 
layer spin up mechanism articulated by Smith and Vogl (2008), Smith   et al. (2009), Smith and 
Montgomery (2016) and Montgomery and Smith (2017b). 

Anthes argues that the boundary layer “ ... must be responsible for a net gain of kinetic 
energy" even though “a substantial dissipation of kinetic energy in the hurricane occurs in the 
boundary layer through turbulent diffusion and ultimate loss of energy to the sea surface". As a 
result, he is led to the paradox that “surface friction is responsible for a net increase in kinetic 
energy and without friction the hurricane could not exist." The resolution of this paradox would 
appear to be Anthes’ de-emphasis of the role of the classical mechanism for spin up in the 
kinetic energy budget. 

The results of our study, especially the noted cancellation of relatively large generation 
and consumption contributions to the term  points to limitations in the utility of a 
global kinetic energy budget in revealing the underlying dynamics of tropical cyclone 
intensification. An alternative approach would be to examine the energetics of individual air 
parcels as they move around some hypothetical circuit (see Emanuel (2004) and references), 
but this approach relies on assumptions about the circuits traversed, circuits that may or may 
not be realizable in reality. 

 

                                                       
7 Presumably, Anthes means the centrifugal force. 
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5  Conclusions 
 
We have re-examined the traditional theory for kinetic energy generation in a tropical 

cyclone used by Palmén and Jordan (1955), Palmén and Riehl (1957), Frank (1977), Hogsett and 
Zhang (2009) and succinctly summarized in the review article by Anthes (1974). We have 
compared this with an alternative interpretation of global kinetic energy generation in 
geophysical flows inspired by Gill (1982), noting that such interpretations are non-unique. 

We have shown that the net rate of production of kinetic energy is a comparatively 
small difference between the generation in regions of inflow and the magnitude of the 
consumption in regions of outflow, so much so, that this difference is comparable in magnitude 
with the rate of generation by the net vertical perturbation pressure gradient force. The latter 
effect was not contained in Anthes’ original formulation, which was based only on the 
horizontal momentum equations. 

We pointed out that the kinetic energy generation term in Anthes’ formulation involving 
the radial pressure gradient does not appear in Gill’s formulation of the kinetic energy equation 
or our modification thereof. It is replaced by a term comprising the global integral of the rate of 
working by perturbation pressure ( ) as the flow expands in the horizontal. However, 
this generation term is largely compensated in the modified Gill formulation by the boundary 
flux of mechanical energy ( ). The fact that the boundary flux of kinetic energy in the Anthes 
formulation ( ) is typically negligible, as well as the difficulty in anticipating the structure of 
the term  in a tropical cyclone are factors weighing in favour of using Anthes’ 
formulation when applied to the generation of kinetic energy in a tropical cyclone. However, in 
the light of the large cancellation of positive and negative values in the radial pressure-work 
term, the contribution from the rate of working of the net vertical force is non-negligible in 
comparison and should be included in any global kinetic energy budget. 

While global energetics provide a constraint on flow evolution, we have shown in the 
context of the kinetic energy equation that they conceal important aspects of energy 
generation and consumption. This finding highlights the limitations of a global kinetic energy 
budget in revealing the underlying dynamics of tropical cyclones. 
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7  Appendix: Calculation of the net vertical force, P 
 
The net vertical force per unit mass, , defined in Equation (4) and used to construct 

Figures 4(e) and 4(f) was first calculated on the stretched model grid at the levels where 
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thermodynamic quantities are defined. The vertical perturbation pressure gradient was 
determined by fitting a quadratic function to three successive levels ,  and  at which 
the perturbation pressure has values ,  and , respectively. Then  

 (16) 

 where . 
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